

**Underwater Sound Solutions** 

www.benthowave.com



#### BII7010 Series Broadband Hydrophone: Low Noise, Low Power, and Low Frequency

The directional response patterns are omnidirectional in low frequency range and toroidal in high frequency range. Typical quality factor Q are 2 in useful frequency range. Pulsed sounds reach stable state quickly and its ringing is short. Custom-fit hydrophones with <a href="low power preamplifiers">low power preamplifiers</a> consume 40µA to 0.6mA which is a great merit for battery-powered portable acoustic system.

These hydrophones provide low-cost solutions for underwater recording, listening, and laboratory acoustics from 0.2Hz to 500kHz. They come with coax/shielded cables and underwater mateable/BNC/TRS/XLR/MIL-5015 style connectors and are ready to be integrated into underwater acoustic systems. They support digital recorders and DAQs (A/D Converter). the output signal can be used for speaker system and headphone.

Small size and broadband of bespoke BIT7015 offers benefit for uses in parabolic receivers underwater to achieve high pressure gain and the narrowest beam width which are the merits in weak signal detection and searching, directional high speed communication, etc...

BII7010 Hydrophones with integrated low power preamplifiers and filters are ideal gears to amplify the weak signals underwater and reject ambient noises. Its compact and small size avoid interferences to acoustic field under test. The <u>preamplifier</u> integrated in the hydrophone can drive cable up to 1000m without signal loss. These features allow them to be used in long line arrays (streamers) and large planar arrays.

The hydrophone body has streamlined hemispherical domes which minimize the drag forces and the hydrodynamic noise caused by the hydrophone in motion or the flow past the hydrophone. they can measure the sound radiations and pressure changes in turbulent processes and flows.

BII7016 hydrophones is specialized to measures low frequency underwater sounds and pressure fluctuations down to 0.02 Hz: Surface Waves (Wave-height Sensor), Turbulences, seismic, ocean traffics, industrial noises, precipitations, biologics, ...

Sound Excitation by Turbulence:  $\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \Delta p = \rho \frac{\partial^2 v_l v_k}{\partial x_l \partial x_k}$  v-Velocity of Turbulence Flow; c-Sound Speed in Fluid; p-Pressure; p-Fluid Density; x-Position.

### **Typical Applications**

|                                     | . )                                      |                                                                   |  |  |
|-------------------------------------|------------------------------------------|-------------------------------------------------------------------|--|--|
| Towed/Dipping Hydrophone, Sonobuoy. |                                          | Detection of Ultrasonic Cavitation Noise, Thermoacoustics in Gas. |  |  |
|                                     | LBL, SBL, USBL Positioning.              | Passive Acoustic Monitoring (PAM System).                         |  |  |
|                                     | Parabolic Antennas Underwater.           | Array Element, Vector Hydrophone Element.                         |  |  |
|                                     | Reference Hydrophone, Noise Measurement. | Marine Bioacoustics, Phantom-power Hydrophone, Sound Recording.   |  |  |
|                                     | Signal detection in strong currents.     | Studies of Ocean Turbulence and Flow, Marine Hydrodynamics.       |  |  |

#### Specification

| Part Number:                                                                                                                                                                                                 | BII7011                                                                                                                                                                                                                                                                                                                                                                                                                                       | BII7011DF                                                                                                                                                                                                                                                                                     | BII7011DW                                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                              | -198.8 dB V/μPa ± 2 dB                                                                                                                                                                                                                                                                                                                                                                                                                        | -194.0 dB V/μPa ± 2 dB                                                                                                                                                                                                                                                                        | -196.5 dB V/μPa ± 2 dB                                                                                      |  |  |  |
| Sensitivity @ 1kHz:                                                                                                                                                                                          | Sensitivity Loss over Extension Cable (dB) = $20*log[C_h/(C_h+C_c)]$ . Valid for hydrophone without preamplifier.                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
|                                                                                                                                                                                                              | Ch: Hydrophone Capacitance; Cc: Capacitance of Extension Cable. Cable is of 100 pF/meter roughly.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
| FFVS:                                                                                                                                                                                                        | Free-field Voltage Sensitivity, Refer to Graph of FFVS vs. Frequency.                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
|                                                                                                                                                                                                              | 0.2 Hz ~ 70 kHz                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 Hz ~ 70 kHz                                                                                                                                                                                                                                                                               | 1 Hz ~ 80 kHz                                                                                               |  |  |  |
| Usable Frequency:                                                                                                                                                                                            | $C_h$ and $R_i$ constitute a high pass filter3dB high pass filter f <sub>-3dB</sub> = $1/(2\pi R_i C_h)$ .                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
| in Water,                                                                                                                                                                                                    | R <sub>i</sub> : Input Resistance or Impedance of Preamp. C <sub>h</sub> : Capacitance of hydrophone at 1 kHz. For example:                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
| at ±3 dB V/μPa.                                                                                                                                                                                              | A BII7011 and a BII preamp of $R_i = 100 \text{ M}\Omega$ are used to detect sounds, -3dB high pass frequency of detection = 0.16 Hz.                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               |                                                                                                             |  |  |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Omega$ M $\Omega$ are used to detect sounds, -3dB high                                                                                                                                                                                                                                      | igh pass frequency of detection = 0.19 Hz.                                                                  |  |  |  |
| Usable Frequency in Air:                                                                                                                                                                                     | 1 Hz ~ 5 kHz at -3dB V/μPa.                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>_</del>                                                                                                                                                                                                                                                                                  | <del>_</del>                                                                                                |  |  |  |
| Capacitance C <sub>h</sub> @ 1kHz:                                                                                                                                                                           | 10.0 nF ± 10%                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.16 nF ± 10%                                                                                                                                                                                                                                                                                 | 1.6 nF ± 10%                                                                                                |  |  |  |
| Dissipation @ 1kHz:                                                                                                                                                                                          | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.015                                                                                                                                                                                                                                                                                         | 0.005                                                                                                       |  |  |  |
|                                                                                                                                                                                                              | 24.7 – 10*log f                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.0 – 10*log f                                                                                                                                                                                                                                                                               | 26.0 – 10*log f                                                                                             |  |  |  |
| ub µrd/VHZ                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                             | neters being measured in water.<br>e density is determined by all noise sources. Genera                     |  |  |  |
| dB μPa/VHz                                                                                                                                                                                                   | 3. As hydrophones works with preamps the total noise density is much higher th                                                                                                                                                                                                                                                                                                                                                                | or data acquisition modules, total noise<br>an the ones stated in this datasheet.                                                                                                                                                                                                             | •                                                                                                           |  |  |  |
| Directivity Pattern:                                                                                                                                                                                         | 3. As hydrophones works with preamps<br>the total noise density is much higher th<br>Omnidirectional and Toroidal. Refer to G                                                                                                                                                                                                                                                                                                                 | or data acquisition modules, total noise<br>an the ones stated in this datasheet.                                                                                                                                                                                                             | •                                                                                                           |  |  |  |
| Directivity Pattern:<br>-3dB Beam Width:                                                                                                                                                                     | 3. As hydrophones works with preamps the total noise density is much higher th Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.                                                                                                                                                                                                                                                                                           | or data acquisition modules, total noise<br>an the ones stated in this datasheet.                                                                                                                                                                                                             | •                                                                                                           |  |  |  |
| Directivity Pattern:<br>-3dB Beam Width:                                                                                                                                                                     | 3. As hydrophones works with preamps the total noise density is much higher th Omnidirectional and Toroidal. Refer to Greefer to Graph of Directivity Pattern.  No side lobes.                                                                                                                                                                                                                                                                | or data acquisition modules, total noise<br>an the ones stated in this datasheet.<br>Graph of <u>Directivity Pattern</u> .                                                                                                                                                                    | e density is determined by all noise sources. Genera                                                        |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level:                                                                                                                                                       | 3. As hydrophones works with preamps the total noise density is much higher th Omnidirectional and Toroidal. Refer to Graph of <u>Directivity Pattern</u> .  No side lobes.  Single Ended                                                                                                                                                                                                                                                     | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of <u>Directivity Pattern.</u> Differential Output                                                                                                                                                      | e density is determined by all noise sources. Genera  Differential Output                                   |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type:                                                                                                                                   | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to                                                                                                                                                                                                              | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial                                                                                                                    | Differential Output                                                                                         |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity:                                                                                                         | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB µPa/(m/s²)                                                                                                                                                                                          | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²)                                                                                                | Differential Output ly over long cable.  125.6 dB µPa/(m/s²)                                                |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector:                                                                                   | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of <u>Directivity Pattern</u> .  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB µPa/(m/s²)  Yes.                                                                                                                                                                            | or data acquisition modules, total noise can the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²) No                                                                                            | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No                                             |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs:                                                                     | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB µPa/(m/s²)  Yes.  52 kHz                                                                                                                                                                            | or data acquisition modules, total noise can the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²) No N/A                                                                                        | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A                                         |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs:                                                                     | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.                                                                                                                                                       | or data acquisition modules, total noise can the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output  o reduce and reject EMI noise, especial  113.1 dB µPa/(m/s²)  No  N/A  N/A                                                                               | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A                                     |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs:                                                          | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of <u>Directivity Pattern</u> .  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.  Approximately, TVR drops 12dB/octave                                                                                                         | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²) No N/A N/A below fs and drops 6dB/octave above fs                                              | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A s.                                  |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs: Maximum Drive Voltage:                                   | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.  Approximately, TVR drops 12dB/octave 400 Vpp                                                                                                         | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²) No N/A N/A below fs and drops 6dB/octave above fs                                              | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A N/A N/A N/A                         |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs: Maximum Drive Voltage: Maximum Pulse Length:             | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.  Approximately, TVR drops 12dB/octave 400 Vpp  100 mS at Maximum Drive Voltage                                                                        | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output  o reduce and reject EMI noise, especial  113.1 dB µPa/(m/s²)  No  N/A  N/A  below fs and drops 6dB/octave above fs  N/A  N/A                              | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A N/A N/A N/A N/A                     |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs: Maximum Drive Voltage: Maximum Pulse Length:             | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.  Approximately, TVR drops 12dB/octave 400 Vpp                                                                                                         | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especial 113.1 dB µPa/(m/s²) No N/A N/A below fs and drops 6dB/octave above fs                                              | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A N/A N/A N/A                         |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs: Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of Directivity Pattern.  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB μPa/(m/s²)  Yes.  52 kHz  133 dB μPa/V at 1m.  Approximately, TVR drops 12dB/octave 400 Vpp  100 mS at Maximum Drive Voltage  10% at Maximum Drive Voltage.                                         | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output  o reduce and reject EMI noise, especial  113.1 dB µPa/(m/s²)  No  N/A  N/A  below fs and drops 6dB/octave above fs  N/A  N/A                              | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A N/A N/A N/A N/A                     |  |  |  |
| Directivity Pattern: -3dB Beam Width: Side Lobe Level: Signal Output Type: Acceleration Sensitivity: Underwater Projector: Resonance fs: TVR at fs: Maximum Drive Voltage: Maximum Pulse Length:             | 3. As hydrophones works with preamps the total noise density is much higher the Omnidirectional and Toroidal. Refer to Graph of <u>Directivity Pattern</u> .  No side lobes.  Single Ended  Differential signal has better capability to 118.8 dB µPa/(m/s²)  Yes.  52 kHz  133 dB µPa/V at 1m.  Approximately, TVR drops 12dB/octave 400 Vpp  100 mS at Maximum Drive Voltage  10% at Maximum Drive Voltage.  100% at ≤ 30 Vpp or 10.6 Vrms. | or data acquisition modules, total noise an the ones stated in this datasheet.  Graph of Directivity Pattern.  Differential Output o reduce and reject EMI noise, especiall 113.1 dB µPa/(m/s²) No N/A N/A N/A below fs and drops 6dB/octave above fs N/A | Differential Output ly over long cable.  125.6 dB µPa/(m/s²) No N/A N/A N/A N/A N/A N/A N/A 950 m, Maximum. |  |  |  |



**Underwater Sound Solutions** 

www.benthowave.com

| BEEBETTE AND INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Siles in a state sound s |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Free-hanging with Male Underwater Connector (FHUWC-3P).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. Thru-hole Inch Mounting with Single O-ring Sealing (THM-7/16").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. Thru-hole Inch Mounting with Double O-ring Sealing (THDO-7/16").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. Bolt Fastening Mounting (Plastics) (BFMP-M12).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. Bolt Fastening Mounting (Plastics) (BFMP-NPT3/8").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. Bolt Fastening Mounting (Stainless Steel) (BFM-7/16").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and more details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE: Single Ended Output Hydrophones. DF: Differential Output Hydrophones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. <b>Default</b> : Coax RG174/U, ΦD=2.8 mm ( <b>RG174</b> ) ( <b>SE</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Coax RG58/U, ФD=4.9 mm ( <b>RG58</b> ) ( <b>SE</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. Shielded Cable with Polyurethane Jacket, ΦD=2.6 mm (SC26). (SE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. Shielded Cable with Rubber Jacket, $\Phi$ D=6.5 mm (SC65), (SE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Cable Options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Default: Shielded Cable with Twisted Pair and PVC Jacket, D=3.6 mm (SC36), (DF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. Shielded Cable with Twisted Pair and PVC Jacket, ΦD=6.0 mm (SC60), (DF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. Shielded Cable with Twisted Pair and Polyurethane Jacket, $\Phi$ D=4.7 mm (SC47), (DF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8. Coax RG178/U, D=1.8 mm (RG178) up to 200°C. (SE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, DD=3.2 mm (SC32), up to 200°C. Non-waterproof, for dry use ONLY, (DF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Cable Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Default: 6 m. 2. Custom-fit Cable Length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE: Single ended Output, DF: Differential Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Default: Wire Leads (WL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Connector:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. Underwater Mateable Connector (3 pin) (UMC3P), Max. Diameter Φ21.5 to Φ35 mm, for SE or DF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UMC3P is from global manufacturers of underwater connectors. Its part number is listed in quote in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Underwater Mateable Connectors are for underwater uses. Other connectors/wire leads are for dry uses and are not waterproofed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Free Hanging: ΦD = Φ22.0 mm, Length = 49.5 mm. Other Mounting Types: Actual length depends on Mounting Parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Weight: 0.12 kg with 6m Coax/BNC Male. Actual weight depends on Mounting Parts, Cable Types and Length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Operation Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. Default: -10°C to +60°C or 14°F to 140°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Operation remperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. Bespoke: -10°C to 120°C, or 14°F to 248°F. Append -HT to part number. Maximum Operating Depth at 120°C or 248°F: 100 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Storage Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -20°C to +60°C or -4°F to 140°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Underwater Projector Application: for 50Ω BNC/SMA/SMC connector, it is buyer's sole responsibility to make sure that the BNC/SMA/SMC shield of the sign of the si |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| source is firmly grounded for operating safety before hooking up transducer/hydrophone to the signal source. Coax with BNC/SMA/SMC is not intended for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| held use at voltages above 30Vac/60Vdc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Do NOT use the hydropho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne as a sound projector in the air otherwise the hydrophone will be damaged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Sound Measurement in A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ir: The hydrophones can be used to detect sounds in air. The sensitivity in air is same to the one in water in low frequency range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

## How to Order Standard Hydrophones. BII Keeps Standard Products in Stock.

| Hydrophone Part Number     | -Mounting Part                                                                                                            | -Cable Length | -Cable Type                           | -Connector Type  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|------------------|--|
| BII7011                    | FH: Free Hanging.                                                                                                         | 6 m (19.7ft)  | RG174 Coax                            | BNC              |  |
| BII7011DF                  | BFMP-3/8"NPT: Bolt-fastening Mounting.                                                                                    | 10 m (32.8ft) | Shielded Cable with Twisted Pair SC60 | WL, TRS, or XLR. |  |
| Example:                   | Description                                                                                                               |               |                                       |                  |  |
| BII7011-FH-6m-RG174-BNC    | BII7011 Hydrophone, Free Hanging, 6m RG174 Coax, BNC Male.                                                                |               |                                       |                  |  |
| BII7011-BFMP-NPT3/8"-6m-   | DIJ7011 Undrankana Balt factorias Mauntins, DEMD NDT3/0" Cm DC174 Copy DNC Mala                                           |               |                                       |                  |  |
| RG174-BNC                  | BII7011 Hydrophone, Bolt-fastening Mounting: BFMP-NPT3/8", 6m RG174 Coax, BNC Male.                                       |               |                                       |                  |  |
| BII7011DF-BFMP-NPT3/8"-    | PUZ041 DE Unden hone Delt factoring Mounting, DEMD NIDT2 /0" 10m Chicladd Coble with Twisted Dais CCCO. TDC Dlug          |               |                                       |                  |  |
| 10m-SC60-TRS               | BII7011DF Hydrophone, Bolt-fastening Mounting: BFMP-NPT3/8", 10m Shielded Cable with Twisted Pair <b>SC60</b> , TRS Plug. |               |                                       |                  |  |
| BII7011DF-FH-10m-SC60-TRS  | BII7011DF Hydrophone, Free Hanging, 10m Shielded Cable with Twisted Pair <b>SC60</b> , TRS Plug.                          |               |                                       |                  |  |
| BII7011DF-FH-10m-SC60-XLR3 | BII7011DF Hydrophone, Free Hanging, 10m Shielded Cable with Twisted Pair <b>SC60</b> , XLR Receptacle with 3 Male Pins.   |               |                                       |                  |  |
| BII7011DF-FH-10m-SC60-WL   | BII7011DF Hydrophone, Free Hanging, 10m Shielded Cable with Twisted Pair <b>SC60</b> , Wire Leads.                        |               |                                       |                  |  |

## How to Order Bespoke Hydrophones. Non-stock.

| Hydrophone Part Number             | -Mounting Part                                                                                                                                                                                                       | -Cable Length | - <u>Cable Type</u> | -Connector Type |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------|--|
| BII7011, BII7011DF, BII7011DW      | Mounting Options.                                                                                                                                                                                                    | In meter.     | Cable Options.      | Connector.      |  |
| Example:                           | Description                                                                                                                                                                                                          |               |                     |                 |  |
| BII7011DW-THM-7/16"-0.6m-SC36-WL   | BII7011DW Hydrophone, Thru-hole Mounting THM-7/16", 0.6m Shielded Cable SC36, Wire Leads.                                                                                                                            |               |                     |                 |  |
| BII7011-HT-FH-6m-RG178-BNC         | BII7011 Hydrophone, Service Temperature: -10 °C to 120 °C, or 14 °F to 248 °F. Free Hanging, 6m RG178 Coax, BNC                                                                                                      |               |                     |                 |  |
| BII/UII-HI-FH-OIII-KGI/8-BNC       | Male.                                                                                                                                                                                                                |               |                     |                 |  |
| BII7011DF-BFMP-NPT3/8"-15m-SC60-WL | BII7011DF Hydrophone, Bolt-fastening Mounting BFMP-NPT3/8", 15m Shielded Cable <b>SC60</b> , Wire Leads.  BII7011DF Hydrophone, Free Hanging, 0.6m Shielded Cable <b>SC65</b> , 3-pin Underwater Mateable Connector. |               |                     |                 |  |
| BII7011DF-FH-0.6m-SC65-UMC3P       |                                                                                                                                                                                                                      |               |                     |                 |  |



Underwater Sound Solutions www.benthowave.com

#### Wirings

| Differential Output: | Wire Leads   | Underwater Connector UMC3P | TRS Plug (Balanced Mono) | XLR Receptacle with 3 Male Pins |               |
|----------------------|--------------|----------------------------|--------------------------|---------------------------------|---------------|
| Signal +             | White or Red | Pin 2                      | Tip, Positive/Hot        | Pin 2, Positive/Hot.            |               |
| Signal -             | Black        | Pin 1                      | Ring, Negative/Cold      | Pin 3, Negative/Cold.           |               |
| Common & Shielding   | Shield       | Pin 3                      | Sleeve, Ground/Common    | Pin 1, Shield/Ground.           |               |
| Single Ended Output: | Wire Leads   | Underwater Connector UMC3P | BNC/SMA/SMC              | Coax with Wire Leads            | TRS           |
| Signal               | White or Red | Pin 2                      | Center Contact           | Coax Center Contact             | Tip           |
| Signal Common        | Black        | Pin 1                      | Shield                   | Coax Shield                     | Ring & Sleeve |
| Shielding            | Shield       | Pin 3                      | Shield                   | Coax Shield                     | Ring & Sleeve |

#### Question:

What if the mating connector of my DAQ module or recording device is NOT available from BII? A bespoke connector adaptor might be assembled by BII and BII ships the adaptor to buyer as accessory of the device. Please contact BII for customizations. Many adaptors for standard connectors are available in worldwide electronic suppliers such as BNC to SMA, BNC to SMC, XLR to TRS, etc. Check out your local suppliers.

What if the connector of my analyzer (instrument) is SMA or SMC Connector? Buyer may order a SMA (or SMC) to BNC (Male) adaptor from local electronic distributors in buyer's country. BII may ship the adaptor as accessory of the device if buyer requests when ordering. By default, BII does NOT supply the adaptor as accessories.

Is impedance matching necessary between hydrophones/sensors and preamplifiers/Recorders/Analyzers? it is NOT necessary to do impedance matching in low frequency range applications in which electromagnetic wave lengths are much greater than the cable length. High frequency transducers such as NDT pulsing transducers need 50Ω impedance matching among transducers, cables, and analyzers/digitizers.

My acoustic sensors generate differential signals in MHz range, are TRS connectors suitable for my applications? Bll's test shows TRS connectors (Plug and Jack) of Bll preamps can be used up to 20 MHz. Test Conditions: TRS Jack with 0.2m cable and TRS plug with 1m cable. Oscilloscope:  $1M\Omega | 20pF$ , Signal Source: DDS Signal Generator.

Can 3.5mm (1/8") TRS be configured for single-ended signal of a hydrophone/transducer which does not have built-in preamplifier? Yes, the preamp with differential-input TRS can accept single-ended signals from hydrophones/transducers whose TRS wiring should be like followings: TRS Tip: Signal. TRS Ring and Sleeve: Both terminals are soldered together for Signal Common and Shielding. Common and shielding should be "one-point" contact.

Can BII explain why the capacitance of my hydrophone/transducer affect high pass filtering? (1). Hydrophone/transducer is high impedance devices in low frequency range. Its simplified complex impedance =  $j/(2\pi fC_h)$ ,  $C_h$  is the capacitance of hydrophone/transducer, f is frequency in Hz. This impedance is in series with preamp  $R_i$  and can reach several  $M\Omega$  to hundreds  $M\Omega$  depending on  $C_h$  and f. (2). Most high-performance operational amplifiers (IC chips) can use input resistors  $R_i$  up to 1 to 200  $M\Omega$  to avoid bumping into saturation issue.



derwater Sound Solutions www.benthowave.com

Physical Size (Dimensional Unit: mm): The overall length varies with the length of the mounting part.

1. Free Hanging with Smooth Domes.



The hydrophone body has streamlined hemispherical domes which minimize the drag forces and the hydrodynamic noise caused by the hydrophone in motion or the flow past the hydrophone.

2. Bolt-Fastening Mounting BFM-NPT3/8", 3/8" NPT Thread Length: 15mm. Nut Height: 5mm.



3. Thru-hole Mounting (Inch Thread) with Single O-ring Sealing THM-7/16" (7/16"-20x22 UNF-2A).



4. Bolt-Fastening Mounting BFM-7/16" (7/16"-20x22 UNF-2A).



5. Free-hanging with Underwater Connector (FHUWC-3P), 3 Pins.



5. More Mounting/Installation Options: Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and details.



**Underwater Sound Solutions** 

www.benthowave.com

## Free-field Voltage Sensitivity (FFVS):

### Transmitting Voltage Response (TVR):



### **Directivity Pattern**



