

Benthowaye Instrument Inc.

Underwater Sound Solutions

www.benthowave.com

Communication Transducer: Toroidal Beam

BII7510 Series Communication Transducer: Wideband, Low Qm

BII7510 series are broadband (low Qm) high power communication transducers with toroidal directivity pattern for uses in voice and message channels underwater especially in the horizontal plane, which is designed for analog and digital communication underwater. Carrier frequencies of 3.5 to 360 kHz support long range and short range communication underwater. The information can be exchanged from 10km away with low frequency sounds.

Pulsed FSK, Chirp-type FSK, Frequency Hopping

DSSS

PSK

CDMA/DSSS

Typical Applications

Remote Control and Telemetry	Underwater Acoustic Network
Artificial Acoustic Target, Echo-Repeater	Diver Communication, Underwater Telephone
Acoustic Deterrent to Marine Animals	Pinger/Tag/Locator/Transponder/Beacon/Acoustic Release
Playback Marine Animal Voices/Calls/Whistles/Songs/Clicks	Marine Animal Behavior Research, Bioacoustic Stimuli

Specification

Part Number:	BII7511H	BII7511HIM		
Signal Type:	Pulsed SINE, Chirp, PSK, FSK, etc.; Pulsed Square Waveform; CW.			
Directivity Pattern:	Toroidal Beam at fs; Omnidirectional at f ≤ 14 kHz.			
-3dB Beam Width:	Refer to Directional Response Pattern.			
Side Lobe Level:	No Side Lobes			
Free Capacitance C _f :	25 nF ± 10% @ 1 kHz			
Dissipation D:	0.005 @ 1 kHz			
	33 kHz ± 10%			
Resonant Frequency fs:	1. Efficiency is low in the frequency range far from f _s , so it is NO	T recommended to operate transducer at frequency far from fs.		
	2. Transducer can operate in low power at frequency far from fs, the input power P _i should be much less than 1% MCIP at f _s .			
Operating Frequency:	N/A	Minimum, 5 kHz		
Quality Factor Quat f	2.5.	2.1		
Quality Factor Q _m at f _s :	Note: -3dB bandwidth $\Delta f = f_s/Q_m$. Qm determines the transient response or the rise and fall rings of steady-state response.			
Efficiency η at f _s :	≥ 0.80			
Power Factor at fs:	≥ 0.35	≥ 0.95		
TVR at f _s :	142.0 ±2 dB μPa/V@1m, Refer to TVR Graph , Transmitting Voltage Response.			
Radiation Sound Level SL:	SL = 20*logV _i + TVR, dB μPa@1m. Driving Voltage V _i is in unit of V _{rms} .			
Admittance or Impedance:	Refer to G-B Graph .	50 Ω		
	Transducer without Impedance Matching Unit	Transducer with Impedance Matching Unit		
	Pulsed Driving Signal and Duty Cycle D < 100%: Maximum V _i ,	Pulsed Driving Signal and Duty Cycle D < 100%:		
Driving Voltage V _i at f _s :	$V_{imax} = V(MIPP/G_{max})$ or 300, whichever is less, in V_{rms} .	$V_{imax} = V(MIPP * Z)$, in V_{rms} . Z is impedance at fs.		
Driving voltage V _i at 1 ₅ :	Continuous Operation at 100% Duty Cycle: Maximum Vi,	Continuous Operation at 100% Duty Cycle: Maximum Vi,		
	$V_{imax} = V(MCIP/G_{max})$, in V_{rms} .	$V_{imax} = V(MCIP * Z)$, in V_{rms} .		
	To achieve higher sound level, built-in impedance matching is recommended to step up driving voltage inside the transducer.			
Input Power P _i :	$P_i = V_i^2 * G$. Refer to G-B Graph: G is conductance, G_{max} is maximum G at f_s .			
MIPP at fs:	Maximum Input Pulse Power at f_s : $P_i = V_i^2 * G_{max}$ or 400 Watts, whichever is less.			
MPW at MIPP and f _s :	60 Seconds, Maximum Pulse Width at MIPP and at f _s .			
MCIP at f _s :	95 Watts, Maximum Continuous Input Power at fs. TBD, to be determined.			
the same and a second control of	diliberation of the state of th			

How to determine pulse width, duty cycle and off-time with input pulse power (peak power) at fs:

- 1. Determine the input pulse power (IPP, peak power) with sound intensity required by the project. IPP MUST be less than MIPP.
- 2. Pulse Width \leq (MIPP * MPW*(120°c-T)/103°c)/IPP. T: Water Temperature in °c.
- 3. Duty Cycle D \leq MCIP*(120°c-T)/103°c)/IPP.
- 4. Off-time $\geq PW^*(1-D)/D$.

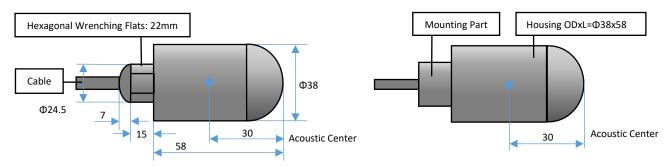
4. OII tillic E I W (1 D// D.	
	-194.2 ± 2 dB V/µPa, Free-field Voltage Sensitivity.
FFVS at fs:	Sensitivity Loss over extension cable at $f_s(dB) = 20 * \log \{(1 + 2\pi f_s C_c/B)/\sqrt{[G^2 + (B + 2\pi f_s C_c)^2]/(G^2 + B^2)}\}$
	G: Conductance at f _s ; B: Susceptance at f _s ; C _c : Capacitance of Extension Cable. Cable is of 100 pF/meter roughly.
Receiving Sound Level SL:	SL = $20*logV_o$ - FFVS, dB μ Pa. Receiving Voltage V_o is in unit of V_{rms} .
Operating Depth:	Maximum, 300 m or 3 MPa Pressure, and Limited by the cable length if the cable has wire leads or a non-waterproof connector.
Mounting Options:	1. Default: Free Hanging (FH)
	2. Thru-hole Mounting with Single O-ring (THSO)
	3. Thru-hole Mounting with Double O-ring (THDO)
	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)
	5. End-face Mounting (EFM)
	Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and more details.
Cable:	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket.
Cable.	2. 50 Ω RG58 Coax (RG58)

Benthowave Instrument Inc.

Underwater Sound Solutions

www.benthowave.com

RHIBH-TRI (198-1)R	La Chialded Cable - 1th T. Saled Balleton	d Taffa a (PTEE) tasket AB	4.0 (CC40) to 2008C AVA	630 6 1 - 1 (N - 1 N/ - 1		
	3. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, ΦD =4.0 mm (SC40), up to 200°C, AWG20 Conductors (Not Water					
	proofed, ONLY for Dry Air Use). Handling: Do not use the cable to support transducer weight in air and water if the transducer has a mounting part. Do not be					
		ort transducer weight in air	and water if the transducer has a	mounting part. Do not bend		
	the cable.					
Cable Length:	1. Default: 1 m.					
	2. Custom.					
	1. Default: Wire Leads (WL)					
	, , ,	2. Male BNC (BNC) (Max. Diameter Ф14.3 mm)				
Connector:	3. MIL-5015 Style (pin) (5015) (Max. Diameter Φ30 mm with 3 contacts)					
connector.	4. Underwater Mateable Connector (pin) (UMC) (Max. Diameter Φ21.5 to Φ35 mm)					
	Note: Underwater Mateable Connector is for uses underwater. Other connectors and wire leads are for dry uses and are not waterproofed.					
Size:	ΦDxL = Φ38x58 mm and actual length depends on Mounting Parts.					
Weight in Air:	≥ 2 kg with 10 m cable. Actual weight depends on Mounting Parts, Cable Types and Length.					
O constitute To constitute	1. Default: -10 °C to +60 °C or 14 °F to 140 °F.					
Operation Temperature:	2. Bespoke High Temperature Transducer: -10 °C to 120 °C, or 14 °F to 248 °F. Append -HT to part number.					
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.					
Power Amplifier:	BII5000 Power Amplifiers for SONAR, NDT, HIFU. Order Separately as standalone devices.					
	BII6000 Bespoke Impedance Matching between transducers and power amplifiers. Order Separately as standalone devices, or					
Impedance Matching:	append -IM to the part number for integrating BII6000 into the transducer, and specify impedance in Ω . For example, BIIxxxx-IM6 Ω :					
	Bllxxxx transducer with built-in Impedance Matching unit as a 6 Ω load.					
TR Switch:	BII2100 Transmitting & Receiving Switch. Order Separately as standalone devices.					
T C	1. Default: No built-in temperature sensor.					
Temperature Sensor:	2. <u>Built-in temperature sensor</u> . Append -TS to part number (BlixxxxTS) for integrating a temperature sensor in the transducer.					
Potable Transmitter:	BII8030 series portable acoustic transmitters.					
Portable T/R System:	BII8080 series portable transmit and receive systems.					
WARNING: DANGER — HIG	H VOLTAGE on wires. Wires shall be insulat	ted for safety. DO NOT TOUC	H THE WIRES BEFORE THE DRIVING	SIGNAL IS SHUT DOWN.		
Cable shield must be ground	ded firmly for safety.					
for 50Ω BNC connector, it is	buyer's sole responsibility to make sure th	nat the BNC shield of the sigr	al source is firmly grounded for op	erating safety before		
hooking up transducer/hyd	rophone to the signal source. Coax with BN	IC is not intended for hand-h	eld use at voltages above 30Vac/6	0Vdc.		
Wiring:	Two Conductor Shielded Cable	Coax/BNC	Underwater Connector	MIL-5015 Connector		
Signal	White or Red	Center Contact	Contact 2	Contact C		
Signal Common	Black	Shield	Contact 1	Contact B		
Shielding and Grounding	Shield	Shield	Contact 3	Contact A		

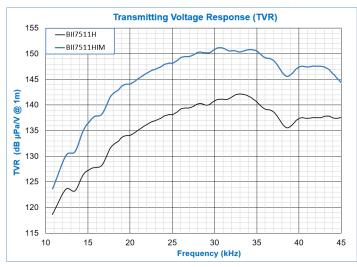

How to Order Transducer

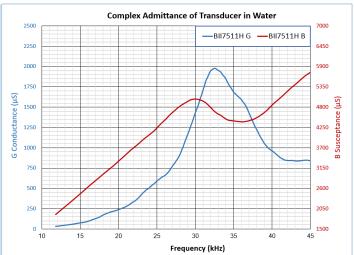
now to Order Transducer					
Part Number	-Mounting Part	-Cable Length in Meter	-Cable Type	-Connector Type	
Example:	Description				
BII7511H-FH-6m-SC-UMC	BII7511H Transducer, Free Hanging, 6m Shielded Cable, Male Underwater Mateable Connector.				
BII7511H-HT-FH-6m-RG178-SMC	BII7511H Transducer, Service Temperature: -10 °C to 120 °C, or 14 °F to 248 °F. Free Hanging, 6m RG178 Coax, SMC (Plug,				
BII/511H-H1-FH-OIII-RG1/8-SIVIC	Female Socket).				
BII7511HIM-FH-10m-RG58-BNC	BII7511HIM Transducer, Built-in Impedance Matching Network to 50Ω, Free Hanging, 10m RG58 Coax, Male BNC.				
BII7511H-IM8Ω-FH-10m-SC-WL	BII7511H Transducer, Built-in Impedance Matching Network to 8Ω, Free Hanging, 10m Shielded Cable, Wire Leads.				
DU75111 TC IN 100 FU 10 CC W/I	BII7511H Transducer, Built-in Temperature Sensor, Built-in Impedance Matching Network to 8Ω, Free Hanging, 10m Shielded				
BII7511H-TS-IM8Ω-FH-10m-SC-WL	Cable, Wire Leads.				

Physical Size (Dimensional Unit: mm): The overall length varies with the length of mounting parts. Please refer to online information of mounting options.

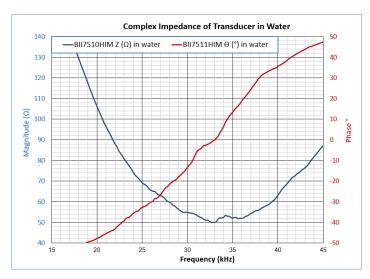
a. Size information of Free Hanging.

b. General Size information.

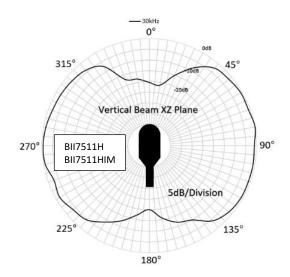

Benthowaye Instrument Inc.


Underwater Sound Solutions

www.benthowave.com


TVR (Transmitting Voltage Response)

Admittance





Impedance

Directional Response Pattern

