

Omnidirectional Spherical Transducer

BII7520 series spherical transducers ranging from 2 to 300kHz provide omnidirectional directivity response and broadband response.

Typical Applications

0

Remote Control, Telemetry, Drifting Array	Underwater Acoustic Network, Spherical Point Source	
Artificial Acoustic Target Echo-Repeater	Diver Communication, Underwater Telephone	
Accustic Determent to Marries Animale	Diver communication, onderwater relephone	
Acoustic Deterrent to Marine Animais	Pinger/Tag/Locator/Transponder/Beacon/Acoustic Release	
Playback Marine Animal Voices/Calls/Whistles/Songs/Clicks	Marine Animal Behavior Research, Bioacoustic Stimuli	

Specification

Part Number:	BII7520-15	BII7520-15IM			
	No	Built-in, Impedance matching to 50Ω by default.			
	TVR and FFVS variation of a transducer with built-in Impedance Matching Network:				
Impedance Matching:	1. When $R_{IM} < 1/G$, TVR increases, FFVS decreases. Generally, this is true for low frequency transducers.				
	2. When $R_{IM} > 1/G$, TVR decreases, FFVS increases. Generally, this is true for high frequency transducers.				
	R_{IM} : Impedance-Matched Resistance such as 50 Ω . G: Transducer Conductance at Operating Frequency.				
Signal Type:	Pulsed SINE, Chirp, PSK, FSK, Pulsed Square Waveform, etc.				
Directivity Pattern:	Omnidirectional Beam				
-3dB Beam Width:	Omnidirectional				
Side Lobe Level:	No side lobes				
Free Capacitance C _f :	170nF ± 10% @ 1kHz, 1m cable.	N/A			
Dissipation D:	0.005 @ 1kHz, 1m cable.	N/A			
Resonant Frequency f _s :	15 kHz ± 10%				
Operating Frequency:	N/A	Minimum, 2 kHz.			
Quality Faster Quatfu	3	2.5			
Quality Factor Q _m at f _s :	-3dB bandwidth $\Delta f = f_s/Q_m$. Qm determines the transient response	e or the rise and fall rings of steady-state response.			
η _{ea at fs} at fs:	0.8 in Water, Electroacoustic Efficiency, Load Medium Dependent	t.			
	at f << fs, $\eta_{ea} / \eta_{ea at fs} \approx 0.25^* (k^* \Phi D)^2$. Wave Number k = $2\pi/\lambda$; ΦD) = Transducer Diameter.			
	1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and drops	gradually at f > fs, so it is NOT recommended for transducers to			
η _{ea} at f << f _s :	emit high power sounds at frequencies far from fs.				
	2. Transducer can emit low power sounds at frequencies far from	m fs such as input power Pi $\leq \eta_{ea}$ * MIPP at f \leq 0.8*fs and Pi \leq 0.2 *			
	MIPP at f ≥ 1.3*f _s .	1			
Power Factor at fs:	≥ 0.7	≥ 0.94			
TVR at fs:	147.0 dB μPa/V at 1m. Transmitting Voltage Response.	144.0 dB μPa/V at 1m			
Radiation Sound Level SL:	SL = $20*\log V_i$ + TVR, dB µPa@1m. Driving Voltage V _i is in unit of V _i	rms.			
Admittance or Impedance:	G _{max} =28.0 mS, B=11.2 mS at f _s .	Z = 50 [*] e ^{jθ} , in Ω , and Phase Angle $ \theta \le 20^{\circ}$ at f _s .			
	Transducer without Impedance Matching Unit	Transducer with Impedance Matching Unit			
	Pulsed Driving Signal and Duty Cycle D < 100%: Maximum V _i ,	Pulsed Driving Signal and Duty Cycle D < 100%: Maximum V _i ,			
Driving Voltage Vi at f.:	$V_{imax} = V(MIPP/G_{max})$ or 600, whichever is less, in V_{rms} .	$V_{imax} = v(MIPP * Z)$, in V_{rms} . Z is impedance at fs.			
	Continuous Operation at 100% Duty Cycle: Maximum Vi,	Continuous Operation at 100% Duty Cycle: Maximum Vi,			
	V _{imax} = V(MCIP/G _{max}), in V _{rms} . V _{imax} = V(MCIP * Z), in V _{rms} .				
	To achieve higher sound level, built-in impedance matching is rec	To achieve higher sound level, built-in impedance matching is recommended to step up driving voltage inside the transducer.			
Input Power P _i :	$P_i = V_i^2 * G$. Refer to G-B Graph: G is conductance.	$P_i = V_i^2 / 50\Omega$ at fs.			
MIPP at fs:	Maximum Input Pulse Power at f_s : $P_i = V_i^2 * G_{max}$ or 800 Watts, wh	ichever is less.			
MPW at MIPP and f _s :	100 Seconds, Maximum Pulse Width at MIPP and at f _s .				
MCIP at fs:	500 Watts, Maximum Continuous Input Power at fs.				
How to determine pulse wid	Ith, duty cycle and off-time with input pulse power (peak power) a	at f _s :			
1. Determine the input pulse power (IPP, peak power) with sound intensity required by the project. IPP MUST be less than MIPP.					
2. Pulse Width \leq (MIPP * MPW*(120°c-T)/103°c)/IPP. T: Water Temperature in °c.					
S. Duty Cycle $D \ge v c r 120 c 105 c 147.$					
FFVS at fs:	195.6 + 2 dB V/uPa Free-field Voltage Sensitivity	-192.6 + 2 dB V/uPa			
	$\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$				
	Sensitivity Loss over extension cubic at $f_s(ab) = 20 * \log \{(1 + 2\pi)_s c_c/D)/\sqrt{[a^2 + (D + 2\pi)_s c_c/^2]/(a^2 + D^2)}\}$ G: Conductance at f. B: Suscentance at f. C. Canacitance of Extension Cable Cable is of 100 nF/meter roughly				
	Please refer to online document AcousticSystem.pdf for conversion between G-B and Z-0. if necessary.				
Receiving Sound Level SL:	SI = $20*\log V_a$ - FEVS dB µPa Receiving Voltage V _a is in unit of V _{max}				
	Maximum, 200 m or 2 MPa Pressure	Maximum, 200 m or 2 MPa Pressure			
Operating Depth:	Limited by the cable length if the cable has wire leads or a non-wr	aterproof connector			
	1 Default: Free Hanging (FH)				
Mounting Options:	2. Thru-hole Mounting with Single O-ring (THSO)				

Benthowave Instrument Inc.

SE=SL-TL+AG-NL	Underwater Sound Solutions	,	www.benthowave.com			
	3. Thru-hole Mounting with Double O-ri	ng (THDO)				
	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)					
	5. End-face Mounting (EFM)					
	Please refer to online document Acoust	icsystem.pdf for a complet	e list of Mounting Options and more	e details.		
	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket.					
	2. 50 Ω RG58 C03X (RG58) 2 Shielded Cable with Twisted Pair and Taflen (DTEE) lacket ΦD=4.0 mm (SC40), up to 200°C, AWG20 Conductors (Not Water, proofed					
Cable:	Similar Cable with twisted Pair and Tenon (PTPE) Jacket, ΦD =4.0 min (3C40), up to 200 C, AWG20 Conductors (Not water-probled, ONLY for Dry Air Lise)					
	Handling: Do not use the cable to support transducer weight in air and water if the transducer has a mounting part. Do not bend					
	the cable.					
Cabla Longth	1. Default: 1 m.					
Cable Length:	2. Custom-fit.					
	1. Default: Wire Leads (WL)					
	2. Male BNC (BNC) (Max. Diameter Φ14	.3 mm)				
Connector:	3. MIL-5015 Style (pin) (MIL) (Max. Diameter Ф30 mm with 3 contacts)					
	4. Underwater Mateable Connector (pin) (UMC) (Max. Diameter Ф21.5 to Ф35 mm)					
	Note: Underwater Mateable Connector is for uses underwater. Other connectors and wire leads are for dry uses and are not					
Sizo:	Refer to Machanical Drawing					
Size.	Refer to Mechanical Drawing.		2.0 kg 10 m sable			
	1.5 kg, 10 m cable.		2.0 kg, 10 m cable.			
Operation Temperature:	-10°C to +75°C or 14°F to 167°F.					
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.					
Power Amplifier:	BII5000 Power Amplifiers for SONAR, NDT, HIFU. Order Separately as standalone devices.					
	BII6000 Bespoke Impedance Matching between transducers and power amplifiers. Order Separately as standalone devices, or					
Impedance Matching:	append -IMI to the part number for integrating BII6000 into the transducer, and specify impedance in Ω . For example, BIIxxxxIM8 Ω :					
TP Switch:	BIIXXXX transducer with built-in Impedance Matching unit as 80 load.					
Th Switch.	bil2100 transmitting & Receiving Switch. Order Separately as standalone devices.					
Temperature Sensor:	2. Built-in temperature sensor. Append -TS to part number (BIIxxxxTS) for integrating a temperature sensor in the transducer.					
Potable Transmitter:	Bil8030 series portable acoustic transmitters.					
Portable T/R System:	BII8080 series portable transmit and receive systems.					
WARNING: DANGER - HIGH	VOLTAGE on wires. Wires shall be insulate	ed for safety. DO NOT TOUC	H THE WIRES BEFORE THE DRIVING	SIGNAL IS SHUT DOWN. Cable		
shield must be grounded firm	nly for safety.					
for 50Ω BNC connector, it is buyer's sole responsibility to make sure that the BNC shield of the signal source is firmly grounded for operating safety before						
hooking up transducer/hydrophone to the signal source. Coax with BNC is not intended for hand-held use at voltages above 30Vac/60Vdc.						
Transducer Wiring:	Two Conductor Shielded Cable	Coax/BNC	Underwater Connector	MIL-5015 Connector		
Signal	White or Red	Center Contact	Contact 2	Contact C		
Signal Common	Black	Shield	Contact 1	Contact B		
Shielding and Grounding	Shield	Shield	Contact 3	Contact A		

How to Order

Part Number	-Mounting Part	-Cable Length in Meter	-Cable Type	-Connector Type
Example:	Description			
BII7520-15-FH-0.6m-SC-UMC	BII7520-15 Transducer, Free Hanging, 0.6m Shielded Cable, Male Underwater Mateable Connector.			
BII7520-15IM-FH-10m-RG58-BNC	BII7520-15IM Transducer, Built-in Impedance Matching Network to 50Ω, Free Hanging, 10m RG58 Coax, Male BNC.			
BII7520-15-IM8Ω-FH-10m-SC-WL	BII7520-15 Transducer, Built-in Impedance Matching Network to 8Ω, Free Hanging, 10m Shielded Cable, Wire Leads.			
BII7520-15-TS-IM8Ω-FH-10m-SC-WL	BII7520-15 Transducer, Built-in Temperature Sensor, Built-in Impedance Matching Network to 8Ω , Free Hanging, 10m Shielded Cable, Wire Leads.			

Physical Size (unit: mm):

