

Underwater Sound Solutions www.benthowave.com

Omnidirectional Spherical Transducer

BII-7520 series spherical transducers ranging from 2 to 300kHz provide omnidirectional directivity response and broadband response.

Typical Applications

Remote Control, Telemetry, Drifting Array	Underwater Acoustic Network, Spherical Point Source
Artificial Acoustic Target, Echo-Repeater	Diver Communication, Underwater Telephone
Acoustic Deterrent to Marine Animals	Pinger/Tag/Locator/Transponder/Beacon/Acoustic Release
Playback Marine Animal Voices/Calls/Whistles/Songs/Clicks	Marine Animal Behavior Research, Bioacoustic Stimuli

Specification

FFVS at f << fs:

Receiving Sound Level SL:

Part Number:	BII7521	ΒΙΙ7521-ΙΜ50Ω		
Resonant Frequency f _s :	22 kHz ± 5%.	•		
Transmitting Frequency:	f _s ± 20%*f _s	f _s ± 20%*f _s and MUST greater than 5 kHz.		
	No	Built-in, Impedance matching to 50Ω by default.		
Impedance Matching:	TVR and FFVS variation of a transducer with built-in Impedance Matching Network: 1. When R _{IM} < 1/G, TVR increases, FFVS decreases. Generally, this is true for low frequency transducers. 2. When R _{IM} > 1/G, TVR decreases, FFVS increases. Generally, this is true for high frequency transducers. R _{IM} : Impedance-Matched Resistance such as 50 Ω. G: Transducer Conductance at Operating Frequency.			
Signal Type:	Pulsed SINE/Square/Chirp, FSK, PSK, Frequency Hopping DSSS,			
Directivity Pattern:	Omnidirectional Beam, Refer to Graph of Directivity Pattern.			
-3dB Beam Width:	Omnidirectional			
Side Lobe Level:	No side lobes			
Free Capacitance C _f :	72.7 nF ± 10% @ 1kHz, 1m cable.	N/A		
Dissipation D:	0.004 @ 1kHz, 1m cable.	N/A		
	4.4	4.4		
Quality Factor Q _m at f _s :	-3dB bandwidth $\Delta f = f_s/Q_m$. Qm determines the transient respo			
η _{ea at fs} at f _s :	≥ 0.9 in Water, Electroacoustic Efficiency, Load Medium Depen			
- Jed de la de la	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.25^* (k^* \Phi D)^2$. Wave Number k = $2\pi/\lambda$;			
		ps gradually at f > f _s , so it is NOT recommended for transducers to		
η_{ea} at f << f _s :	emit high power sounds at frequencies far from f_s . Otherwise, transducer may be damaged by overheating.			
		from f_s . For example, input power $P_i \le \eta_{ea} * MIPP$ at $f \le 0.8 * f_s$ and $P_i \le \eta_{ea} * MIPP$		
	0.2*MIPP at f ≥ 1.3*f _s .			
Power Factor at f _s :	0.7	≥ 0.94		
TVR at f _s :	149.0 ± 2 dB μPa/V at 1m. Transmitting Voltage Response.	149.0 ± 2 dB μPa/V at 1m for BIJ7521-IM50Ω.		
Radiation Sound Level SL:	SL = $20*\log V_i + TVR$, dB μPa@1m. Driving Voltage V_i is in unit of V_{rms} .			
Radiation Sound Level SL.	1. Default: $Z = 50 * e^{j\theta}$, in Ω , and Phase Angle $ \theta \le 20^\circ$ at fs.			
Admittance or Impedance:	Gmax = 20.0 mS; B = 6.5 mS at fs.	2. Customization: refer to Impedance Matching at fs.		
	Refer to G-B Graph .	Refer to Z-0 Graph .		
	Pulsed Driving Signal and Duty Cycle D < 100%:	Pulsed Driving Signal and Duty Cycle D < 100%:		
Driving Voltage V at f	$V_{imax} = V(MIPP/G_{max})$ or 600, whichever is less, in V_{rms} .	$V_{imax} = V(MIPP * Z)$, in V_{rms} . Z is impedance at fs.		
Driving Voltage V _i at f _s : (V _{imax:} Maximum V _i .)	Continuous Operation at 100% Duty Cycle:	Continuous Operation at 100% Duty Cycle:		
(Villiax. IVIaxiiii Vi.)	$V_{imax} = V(MCIP/G_{max})$, in V_{rms} .	$V_{imax} = V(MCIP * Z)$, in V_{rms} .		
	To achieve higher sound level, built-in impedance matching is r			
Input Power P _i :	P _i = V _i ² * G. Refer to G-B Graph: G is conductance.	$P_i = V_i^2 / Z$ at f_s . Z is impedance at f_s .		
MIPP at f _s :	Maximum Input Pulse Power at f_s : $P_i = V_i^2 * G_{max}$ or 1000 Watts	whichever is less.		
MPW at MIPP and f _s :	70 Seconds, Maximum Pulse Width at MIPP and at f _s .			
MCIP at f _s :	480 Watts, Maximum Continuous Input Power at fs. TBD, to be	determined.		
1. Determine the input pulse	tth, duty cycle and off-time with input pulse power (peak power power (IPP, peak power) with sound intensity required by the properties of	•		
	-193.0 \pm 2 dB V/ μ Pa, Free-field Voltage Sensitivity.	-193.0 \pm 2 dB V/μPa for BII7521-IM50 Ω . -204.0 \pm 2 dB V/μPa for BII7521-IM5 Ω .		
FFVS at f _s :	Sensitivity Loss over extension cable at f_s (dB) = 20 * lo G: Conductance at f_s ; B: Susceptance at f_s ; C: Capacitance of Ex Please refer to online document AcousticSystem.pdf for conve	tension Cable. Cable is of 100 pF/meter roughly.		
	-190.0 ± 2 dB V/μPa.			
TEVE of the first the second of the second o				

Sensitivity Loss over Extension Cable (dB) = $20*log[C_h/(C_h+C_c)]$. Valid for hydrophone without preamplifier. C_h : Hydrophone Capacitance; C_c : Capacitance of Extension Cable. Cable is of 100 pF/meter roughly.

SL = $20*logV_o$ - FFVS, dB μ Pa. Receiving Voltage V_o is in unit of V_{rms} .

Underwater Sound Solutions

www.benthowave.com

Operating Depth:	Maximum, 300 m or 3 MPa Pressure. Limited by the cable length	if the cable has wire leads or a non-waterproof connector.			
	1. Default: Free Hanging (FH)	·			
	2. Thru-hole Mounting with Single O-ring (THSO)				
Manustina Outions	3. Thru-hole Mounting with Double O-ring (THDO)				
Mounting Options:	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)				
	5. End-face Mounting (EFM)				
	Please refer to online document AcousticSystem.pdf for a comple	ete list of Mounting Options and more details.			
	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket.				
	SC with Two Conductors for transmit signal; SC with 4 conductors	ors for receive signal.			
California Cartina and	2. 50 Ω RG58 Coax (RG58)	ND 4.0 mars (CC40) was to 200°C ANN(C20 Conductors (Not Notes			
Cable Options:		DD=4.0 mm (SC40), up to 200°C, AWG20 Conductors (Not Water-			
	proofed, ONLY for Dry Air Use). Handling: Do not use the cable to support transducer weight in	air and water if the transducer has a mounting part. Do not bend			
	the cable.	an and water in the transducer has a mounting part. Do not bend			
	1. Default: 1 m.				
Cable Length:	2. Custom-fit.				
	1. Default: Wire Leads (WL), for Transmit, Receive Signal, and DC	Power Supply.			
	2. Underwater Mateable Connector (pin) (UMC) (Max. Diameter	Ф21.5 to Ф35 mm), for Transmit or Receive Signal.			
	3. MIL-5015 Style (pin) (MIL) (Max. Diameter Φ19 to Φ30 mm), fo	<u> </u>			
	4. XLR Plug (pin) (XLR). (Max. Diameter Φ20.2 mm), for Transmit	or Receive Signal.			
Connector Options:	5. Male BNC (BNC) (Max. Diameter Φ14.3 mm), for Transmit or Receive Grounded Signal.				
connector options.	6. 1/8" (3.5mm) TRS Plug (TRS) (Max. Diameter Φ10.5 mm), for Receive Signal ONLY.				
	7. +9VDC Battery Snap (BS), +9VDC or +18VDC power supply for Built-in T/R Switch Module.				
	8. 4mm Banana Plug Pair (Red and Black Color) (BP), DC power supply for Built-in T/R Switch Module.				
	Note: Underwater Mateable Connector is for uses underwater. O	ther connectors and wire leads are for dry uses and are not			
	waterproofed. DD = Ф89 mm, Length ≥ 110 mm.	ΦD = Φ89 mm, Length ≥ 150 mm.			
Physical Size:	Actual length depends on Mounting Parts and/or Add-on Parts su				
	1.0 kg, 1m cable.	1. 5 to 2.5 kg, 1m cable.			
Weight in Air:	Actual weight depends on Mounting Parts, Cable Types and Lengt	1 3,			
On another Townsons towns		til, allu/oli Adu-oli Parts such as -1K, -livi, -111, etc.			
Operation Temperature:	-10 °C to +60 °C or 14 °F to 140 °F.				
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.				
	BII6000 Bespoke Impedance Matching between transducers and I				
Impedance Matching at fs:	append -IMxx Ω to the part number for integrating BII6000 into the transducer and specify impedance in Ω at fs. For example, BIIxxxx-IM8 Ω : BIIxxxx transducer with built-in Impedance Matching unit as 8Ω load at fs.				
	Phase Angle θ of Complex Impedance ≤ 20° at fs.				
	9 1 1 1	eamp and Bandpass Filter. Order Separately as standalone devices			
TR Switch Module:	or append -TR to the part number for integrating BII2100 into the	· · · · · · · · · · · · · · · · · · ·			
om.com.module.	built-in T/R Switch Module.				
T	1. Default: No built-in temperature sensor.				
Temperature Sensor:	2. <u>Built-in temperature sensor</u> . Append -TS to part number (BIIxxxx-TS) for integrating a temperature sensor in the transducer.				
Power Amplifier:	BII5000 Power Amplifiers for SONAR, NDT, HIFU. Order Separately as standalone devices.				
Potable Transmitter:	BII8030 series portable acoustic transmitters.				
Portable T/R System:	BII8080 series portable transmit and receive systems.				
WARNING: DANGER — HIGH	VOLTAGE on wires. Wires shall be insulated for safety. DO NOT TOU	JCH THE WIRES BEFORE THE DRIVING SIGNAL IS SHUT DOWN. Cable			
shield must be grounded firm					
for 50Ω BNC/SMA/SMC conr	nector, it is buyer's sole responsibility to make sure that the BNC/SN	AA/SMC shield of the signal source is firmly grounded for operating			
safety before hooking up train	nsducer/hydrophone to the signal source. Coax with BNC/SMA/SMC	C is not intended for hand-held use at voltages above 30Vac/60Vdc.			

Wiring Information of a Transducer without T/R Switch.

Transducer Wiring:	Shielded Cable	Coax, BNC.	Underwater Connector	MIL-5015 Connector	XLR Plug	
Signal:	White or Red	Center Contact	Contact 2	Contact C	Pin 2	
Signal Common:	Black	Shield	Contact 1	Contact B	Pin 3	
Shielding and Grounding	Shield	Shield	Contact 3	Contact A	Pin 1	

Wiring Information of Temperature Signal.

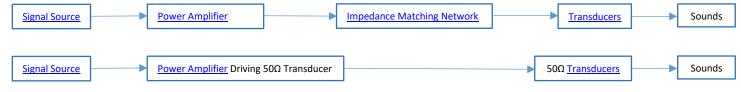
Temperature Sensor Wiring:	Shielded Cable	Coax, BNC, SMC, SMA	Underwater Connector	XLR Plug	TRS Plug
Signal:	White or Red	Center Contact	Contact 2	Pin 2	Tip
Signal Common:	Black	Shield	Contact 1	Pin 3	Ring
Shielding and Grounding	Shield	Shield	Contact 3	Pin 1	Sleeve

How to Order of a Transducer without T/R Switch.

HOW to Grace of a fransaucci without	171101111				
Part Number	-Mounting Part	-Cable Length in Meter	-Cable Type	-Connector Type	
Example:	Description				
BII7521-BFMSS-0.3m-SC-UMC	BII7521 Transducer, Bolt Fastening Mounting (Stainless Steel) (BFMSS), 0.3m Shielded Cable, Male Underwater Mateable				
BI17321-BI 18133-0:3111-3C-0181C	Connector.				
BII7521-IM50Ω-FH-10m-RG58-BNC	BII7521IM Transducer, Built-in Impedance Matching Network to 50Ω, Free Hanging, 10m RG58 Coax, Male BNC.				
BII7521-IM8Ω-FH-10m-SC-WL	BII7521 Transducer, Built-in Impedance Matching Network to 8Ω, Free Hanging, 10m Shielded Cable, Wire Leads.				

Underwater Sound Solutions

www.benthowave.com

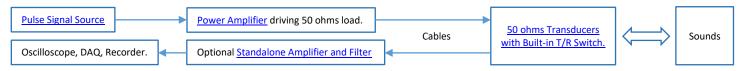

BII7521-TS-IM8Ω-FH-10m-SC-WL

BII7521 Transducer, Built-in Temperature Sensor, Built-in Impedance Matching Network to 8Ω , Free Hanging, 10m Shielded Cable, Wire Leads.

System Setup of Transmitting Sounds ONLY with Low Power.

System Setup of Transmitting Sounds ONLY with High Power.

System Setup of Transmitting and Receiving Sounds.


Transducer Specifications with Built-in T/R Switch and 50Ω Impedance Matching for Sound Transmitting and Receiving.

Part Number:	<u>BII75xx-TR-IM50Ω.</u>	
Part Number.	Refer to Transducer Specifications for transducer specs. This table lists specifications of add-on part of TR Switches.	
Impedance Matching at fs:	-IM50 Ω : Integrated inside transducer housing and transform its impedance to be 50 Ω at fs.	
impedance Matching at is.	$Z = 50 * e^{j\theta}$, in Ω , and Phase Angle $ \theta \le 20^\circ$ at fs.	
	-TR: Transmitting & Receiving Switch Module, a bespoke fixed gain preamp and a bespoke bandpass filter are built inside	
	transducer housing to receive sounds.	
Receiving Preamp and Filter:	1. Avoid saturation caused by strong sounds levels in low frequency range.	
	2. Avoid signal loss over cable.	
	3. Avoid signal loss caused by impedance matching network which is built inside transducers.	
Sensitivity @ fs:	-193.0 + Preamp Gain, ± 2 dB V/μPa.	
Sensitivity @ f << fs:	-190.0 + Preamp Gain, ± 2 dB V/ μ Pa.	
Sensitivity Loss:	No Sensitivity Loss over Cable.	
Preamp Gain:	1. Default: 30 dB	
Freamp dam.	2. Bespoke: 0 dB to 60 dB.	
	1. Default: 2 to 50 kHz.	
	2. Customized with fs, specify when ordering.	
	Minimum -3dB cut-off frequency of high pass filter: 2 kHz.	
	Band Pass Filter: 1st order, 20/Decade Roll-off.	
	1. Reduce Noise. Both ocean ambient noises and the self-noises of electronic devices decrease when frequency increases. It is	
-3dB Receiving Bandwidth:	recommended to choose a built-in high pass filter to reject noises in low frequency range. For example, if you are interested in the	
	signals greater than 20 kHz, you may specify a high pass filter with -3dB cut-off frequency at 2 to 5 kHz to improve signal to noise	
	ratio of the signals of the interest.	
	2. Avoid Saturation. When there are strong low frequency noises, disturbances, and/or vibrations, resulting from rough surface	
	waves and/or mechanical movements of the platform, it is recommended to specify a high pass filter to avoid hydrophone	
	saturation in these low frequency ranges.	
Voltage Noise RTI en:	7.0 nV/VHz at default gain.	
Current Noise RTI i _n :	0.56 fA/VHz.	
Input Dynamic Range:	≥ 100 dB at 100 kHz Bandwidth.	
Output Signal Type:	Differential	
Output Impedance:	10 Ω	
Cable Drive Capability:	200 m	
Cable:	Four Conductor Shielded Cable	
Connector:	Refer to Connector Options.	
Signal Conditioning:	Standalone Programmable Gain Amplifier and Filters to compensate the loss of sound propagation and spreading. Order separately	
Power Supply of Receiving Circ	cuit	
Supply Voltage V _s :	+8.5 to +32 VDC	
Current (Quiescent):	6.8 mA	
	+9VDC Battery, Marine Battery, Automobile Battery, Fixed DC Linear Power Supply, Not Included.	
Suggested DC Supply:	DO NOT use variable power supply whose maximum supply voltage is higher than the above rated voltage.	
	DO NOT use switching mode DC power supply.	
DC Supply Cable:	Two Conductor Shielded Cable if the cable of Receiving Signal is Coax.	
DC Supply Connector:	Refer to Connector Options.	

Underwater Sound Solutions www.benthowave.com

System Setup of Transmitting and Receiving Sounds.

Wiring Information of Receiving Sounds of a Transducer with T/R Switch.

Differential Output:	Wire Leads	UMC4P/XLR4P Connecto	UMC4P/XLR4P Connector		TRS + 9V Battery Snap
+VDC	Red	Pin 3		Battery Female Snap	Battery Female Snap
Common	Black	Pin 1		Battery Male Snap	Battery Male Snap
Signal+	White	Pin 2		XLR Pin 2	TRS Tip
Signal-	Blue, Green, or Yellow	Pin 4		XLR Pin 3	TRS Ring
Signal Common	N/A	N/A		XLR Pin 1	TRS Sleeve
Shielding	Shield	N/A	N/A		N/A
Carlo Fadad Cara a Mina tanda		BNC Male,	UMC4P/XLR4P	XLR3P and	TRS Plug and
Single Ended Output:	Wire Leads	9V Battery Snap	Connector	9V Battery Snap	9V Battery Snap
+VDC	Red	Female Snap	Pin 3	Battery Female Snap	Battery Female Snap
Common	Black	Male Snap	Pin 1	Battery Male Snap	Battery Male Snap
Signal	White	Center Pin or Contact	Pin 2	XLR Pin 2	TRS Tip
Signal Common	Blue, Green, or Yellow	BNC Shield	Pin 4	XLR Pin 1 and Pin 3	TRS Ring and Sleeve
Shielding	Shield	N/A	N/A	XLR Metal Shell	N/A
4mm Banana Plug Pair: Red Plug for +VDC, Black Plug for Common of the DC power supply.					

How to Order Transducers with -TR-IM50Ω. The default options are for stock items which are regularly available.

FH: Free Hanging. SC for Low Frequency Transmit: Shielded Cable (Rubber Jacket, 600V) with 2 conductors. Coax for High Frequency Transmit: 50 Ω Coaxial Cable. SC for Low Frequency Receive: Shielded Cable with 4 conductors. Coax for High Frequency Receive: 50 Ω Coaxial Cable. WL: Wire Leads. HPF: -3dB High Pass Filter Frequency. LPF: -3dB Low Pass Filter Frequency. Cable of Temperature sensor is two-conductor shielded cable. Cable of DC Supply is two-conductor shielded cable in case that receive cable is coax.

Receiving Cable is fixed to be four-conductor Shielded cable. Transmitting cable can be customized to be Coax or two-conductor shielded cable.

Length of Transmitting and receiving cables are same in default.

Part Number	- <u>Preamp Gain</u>	-HPF/LPF	-Mounting	-Cable Length	- <u>Transmit Cable</u>	-Connector for signals of Transmit/ Receive/DC Supply/Temperature
BII7521-TR-IM50Ω	Default: 30 dB	-3dB Receive bandpass Frequencies. Default: 2kHz to 50kHz	Default: BFM-FH.	Default: 15m.	SC or Coax. Default: SC.	Default: WL .
Example:	-	Description				
BII7521-TR-IM50Ω-30d BFM-FH-15m-SC-WL	BII7521-TR-IM50Ω-30dB-2kHz/50kHz- BII7521-TR-IM50Ω-30dB-2kHz/50kHz- 30dB. Receive Bandpass Filter: 2kHz to 50kHz. Bolt-Fastening Mounting with Free Hanging: BFM-FH. 15m				-	
	BII7521 Transducer, Built-in T/R Switch, Built-in Impedance Matching Network as 50Ω load at fs, Receive Garden BII7521-TR-IM50Ω-30dB-2kHz/50kHz-BFM-FH-10m-SC-MIL3P/XLR4P/BS BII7521 Transducer, Built-in T/R Switch, Built-in Impedance Matching Network as 50Ω load at fs, Receive Garden Bardens Filter: 2kHz to 50kHz. Bolt-Fastening Mounting with Free Hanging: BFM-FH, 10r Transmitting Cable: Shielded Cable, 3 Pin MIL-5015 Connector for Transmit Signal, 4 Pin XLR for Receive Battery Snap for DC Supply.			Free Hanging: BFM-FH, 10m cables,		
BII7521-TR-IM50Ω-40dB-5kHz/40kHz-FH- 10m-RG58-BNC/BNC/BS/TRS BII7521-Transducer, Built-in T/R Switch, Built-in Impedance Matching Network as 50Ω load at fs, Receive G Receive Bandpass Filter: 5kHz to 40kHz. Free Hanging, 10m cables, Transmitting Cable: RG58 Coax, Connector for Transmit Signal, BNC Male for Receive Signal, 9V Battery Snap for DC Supply, TRS for Ter Signal.			nitting Cable: RG58 Coax, BNC Male			
BII7521 Transducer, Built-in Temperature Sensor, Built-in T/R Switch, Built-in Impedance Matching Network load at fs, Receive Gain: 20dB, Receive Bandpass Filter: 2kHz to 30kHz. Bolt-Fastening Mounting with Free H BFM-FH-10m-SC-MIL3P/XLR4P/BS/TRS BFM-FH, 10m cables, Transmitting Cable: Shielded Cable, 3 Pin MIL-5015 Connector for Transmit Signal, 4 Pin Receive Signal, 9V Battery Snap for DC Supply, TRS for Temperature Signal.			astening Mounting with Free Hanging:			

Question:

What if the mating connector of my DAQ module or recording device is NOT available from BII?

- 1. Buyer may order BII products with wire leads, and buyer assembles the mating connector to the cable end.
- 2. A connector adaptor might be assembled by BII by customization, and BII ships the adaptor to buyer as accessory of the device. Please contact BII for customizations.
- 3. Many adaptors for standard connectors are available in worldwide electronic suppliers such as BNC to SMA, BNC to SMC, XLR to TRS, etc. Check out your local suppliers.

What are the advantage and disadvantage of a built-in T/R Switch Module comparing to a standalone T/R Switch Module?

A built-in T/R Switch Module amplifies the received signal of the sensing element before the signal is polluted by EMI noises and system ground loop noises, and before it is attenuated by capacitance, inductance, and resistance of cables. But its price is a little bit higher than standalone T/R Switch Module.

Cable and Connector Information for High Power Signals (from Power Amplifier and to Transducers). Non-UL Uses.

	Wire and Cable Types	Ratings of Voltage, Current or Power, and Temperature.
	AWG18 Wires (WR)	3000 Vrms, 10 Arms.
Cable:	Two Conductor Shielded Cable (SC)	600 Vrms, 5 Arms.
Cable.	High Temperature Shielded Cable (HTSC199)	600 Vrms, 6 Arms, up to +199°C or 390 °F, Non-waterproof.
	Coax RG58 (50Ω) (RG58)	1400 Vrms, 4 Arms.
	Coax RG174/U (50Ω) (RG174)	1100 Vrms, 1.6 Arms.

Underwater Sound Solutions

www.benthowave.com

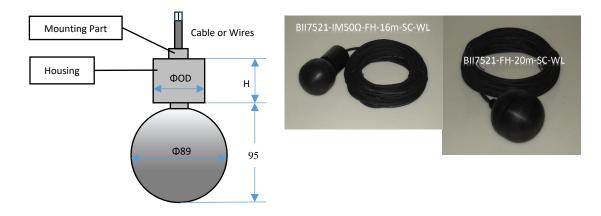
	Coax RG178B/U (50Ω) (RG178).	750 Vrms, 0.86 Arms, up to +200°C or 390°F.
	Connector Type	Ratings of Voltage, Current or Power, and Temperature.
	1. Wire Leads (WL)	Used for Cables or Wires.
	2. 50Ω BNC (BNC), Bayonet Lock. Panel Mount or In-line.	500Vrms, 316W.
	In-line BNC: Input uses Pin, output uses Socket.	-65°C to 165°C, or -53.9°F to 329°F.
	Panel Mount BNC: Both Input and Output use BNC Jacks.	Used for Grounded Signal with Metal Enclosures or Coax Cables.
C	3. MIL-5015 Type Connector (MIL), Thread Fastening.	500Vrms, 13 A; Up to +125°C or 257°F, or,
Connector:	Panel Mount or In-line. Input uses Pin, output uses Socket.	900Vrms, 13 A; Up to +125°C or 257°F.
	Parier Would of In-line. Input uses Pin, output uses socket.	Used for Metal Enclosures or Shielded Cables.
	4. XLR Connector (XLR), Positive Latchlock.	133Vrms, 15 A; -25°C to +75°C or -13°F to +167°F.
	Panel Mount or In-line. Input uses Pin, output uses Socket.	Used for Metal Enclosures or Shielded Cables.
	5. Underwater Mateable Connector (UMC), Thread Fastening.	600Vrms, 10A. Waterproof, IP68.
	Panel Mount or In-line. Input uses Pin, output uses Socket.	Used for Metal Enclosures or Shielded Cables.

How to choose cable and connector for BII devices: Driving Voltage V_{drive} (V_{rms}) = $\sqrt{Power*R_L} = \sqrt{Power/G}$. R_L: Resistance of a transducer in load medium at f_s. G: conductance at fs: $R_L = 1/G$ at fs. BII lists G-B data at fs and/or the graph of G-B vs Frequency in online datasheet.

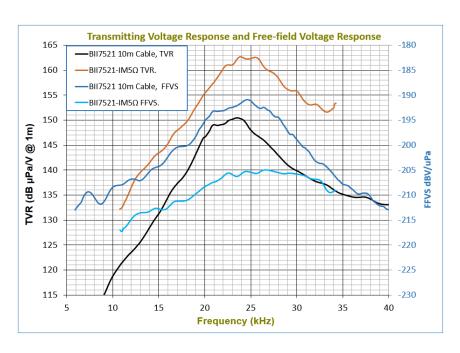
Case 1. Deliver 1000 Wrms to 3 k Ω transducer at f_s. Note: the 3 k Ω is the resistance of the transducer in load medium at f_s.

Driving voltage to transducer $V_{drive} = \sqrt{1000*3000} = 1732 \text{ V}_{rms}$. The current to 3 k Ω transducer I $_{drive} = V_{drive}/R_L = 1732 \text{V}_{rms}/3000\Omega = 0.57733 \text{ A}_{rms}$. Therefore, AWG18 Wire and Wire leads are suitable.

Case 2. Deliver 500 Wrms to 300 Ω transducer at f_s. Note: the 300 Ω is the resistance of the transducer in load medium at f_s.


Driving voltage to transducer V drive = $\sqrt{500*300}$ = 387.3 V rms. The current to 300 Ω transducer I drive = V drive/RL = 387.3 V rms/300 Ω = 1.291 A rms.

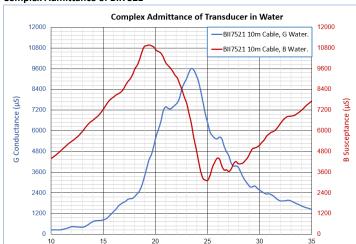
Therefore, Two Conductor Shielded Cable and MIL-5015 Type Connector or Underwater Mateable Connector (UMC) are suitable.


Case 3. Deliver 300 Wrms to 50 Ω transducer at f_s.

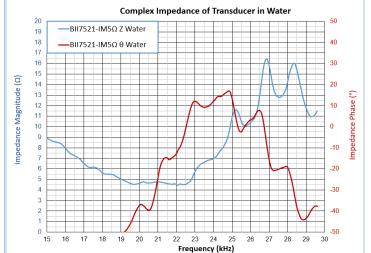
Driving voltage to transducer $V_{drive} = \sqrt{300*50} = 122.5 \text{ V}_{rms}$. The current to 50 Ω transducer I $_{drive} = V_{drive}/R_L = 122.5 \text{V}_{rms}/50\Omega = 2.45 A_{rms}$. Therefore, 50 Ω RG58 Coax and BNC are suitable.

Physical Size (Dimensional Unit: mm): The overall length varies with the length of mounting parts. Please refer to online information of mounting options. BII7521: Φ ODxH = Φ 3x(15 to 20), varies with mounting parts options. BII7521-IMxxΩ, BII7521-TR, BII7521-TR, BII7521-TR BII7521

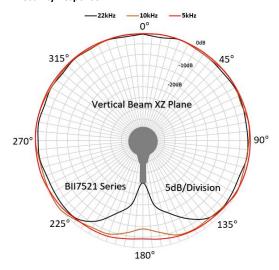
TVR and FFVS:

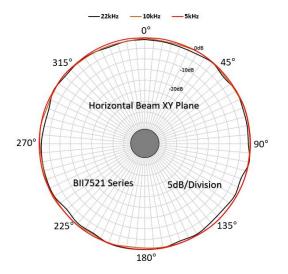


Underwater Sound Solutions


www.benthowave.com

Complex Admittance of BII7521




Frequency (kHz)

Complex Impedance of BII7521-IM5Ω

Directivity Response:

