

Benthowave Instrument Inc. Underwater Sound Solutions http://www.benthowar http://www.benthowave.com

BII-7520 BII-7520 1-7525 BII-7525 BII-7520 BII-7529 BII-7520 * BII-752 00 009 900

	Transducer Specificatio						
Part Number:	BII7524	ΒΙΙ7524-ΙΜ50Ω					
Resonant Frequency f _s :	50 kHz ± 5%	50 kHz ± 10%					
Transmitting Frequency:	f _s ± 20%*f _s	$f_s \pm 25\%^* f_s$ and MUST greater than 10 kHz.					
	No	Built-in, Impedance matching to 50Ω by default.					
Impedance Matching:	TVR and FFVS variation of a transducer with built-in Impedance Matching Network:						
impedance matering.	 When R_{IM} < 1/G, TVR increases, FFVS decreases. Generally, this is true for low frequency transducers. When R_{IM} > 1/G, TVR decreases, FFVS increases. Generally, this is true for high frequency transducers. 						
	R_{IM} : Impedance-Matched Resistance such as 50 Ω . G: Transducer						
Signal Type:	Pulsed SINE, Chirp, PSK, FSK, Pulsed Square Waveform, etc.						
Directivity Pattern:	Omnidirectional Beam at fs. Refer to Graph of Directivity Pattern.						
Free Capacitance Cf:	24.0 nF ± 10% @ 1kHz, 1m cable.	N/A					
Dissipation D:	0.004 @ 1kHz, 1m cable.	N/A					
Quality Factor Q _m at f _s :	3.85	2.8					
	-3dB bandwidth $\Delta f = f_s/Q_m$. Qm determines the transient response	e or the rise and fall rings of steady-state response.					
η _{ea at fs} at fs:	0.86 in Water, Electroacoustic Efficiency, Load Medium Depender	nt.					
	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.25^*(k^*\Phi D)^2$. Wave Number k = $2\pi/\lambda$; ΦD						
		gradually at f > f_s , so it is NOT recommended for transducers to					
η _{ea} at f << f _s :	emit high power sounds at frequencies far from fs. Otherwise, tr						
	2. Transducer can emit low power sounds at frequencies far fro 0.2^* MIPP at f $\ge 1.3^*$ f _s .	m fs. For example, input power $P_i \leq \eta_{ea}*MIPP$ at $f \leq 0.8*f_s$ and $P_i \leq$					
Power Factor at fs:	0.84	≥0.94					
		152.5 ± 2 dB μPa/V@1m for BII7524-IM50Ω.					
TVR at f _s :	150.0 ± 2 dB μPa/V@1m, Transmitting Voltage Response.	155.0 \pm 2 dB μ Pa/V@1m for BII7524-IM30 Ω .					
		159.0 ± 2 dB μPa/V@1m for BII7524-IM5Ω.					
Radiation Sound Level SL:	SL = $20*\log V_i + TVR$, dB µPa@1m. Driving Voltage V _i is in unit of V _i						
	Refer to G-B Graph .	1. Default: $Z = 50^* e^{i\theta}$, in Ω , and Phase Angle $ \theta \le 20^\circ$ at fs.					
Admittance or Impedance:		2. Customization: refer to <u>Impedance Matching at fs</u> .					
	Pulsed Driving Signal and Duty Cycle D < 100%:	Refer to Z-Ø Graph. Pulsed Driving Signal and Duty Cycle D < 100%:					
	$V_{imax} = V(MIPP/G_{max})$ or 230, whichever is less, in V_{rms} .	$V_{imax} = V(MIPP * Z)$, in V_{rms} . Z is impedance at fs.					
Driving Voltage Vi at fs:	Continuous Operation at 100% Duty Cycle:	Continuous Operation at 100% Duty Cycle:					
	V _{imax} = √(MCIP/G _{max}), in V _{rms} .	$V_{imax} = v(MCIP * Z)$, in V_{rms} .					
	To achieve higher sound level, built-in impedance matching is rec						
Input Power P _i :	$P_i = V_i^2 * G$. Refer to G-B Graph: G is conductance.	$P_i = V_i^2 / Z$ at f_s . Z is impedance at f_s .					
MIPP at fs:	460 Watts, Maximum Input Pulse Power.						
MPW at MIPP and fs:	24 Seconds, Maximum Pulse Width.						
MCIP at fs:	130 Watts, Maximum Continuous Input Power.						
-	Ith, duty cycle and off-time with input pulse power (peak power) a power (IPP, peak power) with sound intensity required by the projection of the project						
	W*(120°c-T)/103°c)/IPP. T: Water Temperature in °c.						
 Duty Cycle D ≤ MCIP*(120 							
4. Off-time ≥ $PW^{*}(1-D)/D$.							
		-201.0 \pm 2 dB V/µPa for BII7524-IM50 Ω .					
	-198.0 ± 2 dB V/μPa, Free-field Voltage Response.	$-203.0 \pm 2 \text{ dB V/}\mu\text{Pa for BII7524-IM30}\Omega$.					
FFVS at fs:	Sensitivity Loss over extension cable at $f_s(dB) = 20 * \log \{$	$(1 + 2\pi f C / P) / \sqrt{C^2 + (P + 2\pi f C)^2 / (C^2 + P^2)}$					
	G: Conductance at f_s ; B: Susceptance at f_s ; C _c : Capacitance of Extended to f_s (<i>ab</i>) = 20 * 10g (
	Please refer to online document AcousticSystem.pdf for conversion						
Receiving Sound Level SL:	SL = 20*logV _o - FFVS, dB μ Pa. Receiving Voltage V _o is in unit of V _{rm}						
	Maximum, 460 m or 4.6 MPa Pressure.	Maximum, 300 m or 3 MPa Pressure.					
Operating Depth:	Limited by the cable length if the cable has wire leads or a non-wa	aterproof connector.					
	1. Default: Free Hanging (FH)						
	2. Thru-hole Mounting with Single O-ring (THSO)						
Mounting Options:	3. Thru-hole Mounting with Double O-ring (THDO)						
	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)						
	 End-face Mounting (EFM) Please refer to online document <u>AcousticSystem.pdf</u> for a complete 	ete list of Mounting Options and more details					
	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket.						
Cable Options:	SC with Two Conductors for transmit signal; SC with 4 conductor	ors for receive signal.					
	2. 50 Ω RG58 Coax (RG58)						

Benthowaye Instrument Inc. Underwater Sound Solutions http://www.benthowaye.com

Page 2 of 5

SE=SL-1L+AG-NL	Olderwater Sound Solutions	J/ www.benniowave.com						
	3. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, C	DD=3.2 mm (SC32), up to 200°C, AWG26 Conductors (Not Water-						
	proofed, ONLY for Dry Air Use).							
	4. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, O	DD=4.0 mm (SC40), up to 200°C, AWG20 Conductors (Not Water-						
	proofed, ONLY for Dry Air Use).							
	5. Two Conductor Unshielded Cable (USC)							
	landling: Do not use the cable to support transducer weight in air and water if the transducer has a mounting part. Do not bend							
	the cable.							
Cable Lonath	1. Default: 1 m.							
Cable Length:	2. Custom-fit.							
	1. Default: Wire Leads (WL), for Transmit, Receive Signal, and DC	Power Supply.						
	2. Underwater Mateable Connector (pin) (UMC) (Max. Diameter	Φ21.5 to Φ35 mm), for Transmit or Receive Signal.						
	3. MIL-5015 Style (pin) (MIL) (Max. Diameter Ф19 to Ф30 mm), f	or Transmit or Receive Signal.						
	4. XLR Plug (pin) (XLR). (Max. Diameter Φ20.2 mm), for Transmit	or Receive Signal.						
	5. Male BNC (BNC) (Max. Diameter Φ14.3 mm), for Transmit or F	Receive Grounded Signal.						
Connector Options:	BNC with RG178 Coax: Service Temperature up to 165°C or 32	29°F.						
·	6. 1/8" (3.5mm) TRS Plug (TRS) (Max. Diameter Φ10.5 mm), for F	Receive Signal ONLY.						
	7. +9VDC Battery Snap (BS), +9VDC or +18VDC power supply for I	5						
	8. 4mm Banana Plug Pair (Red and Black Color) (BP), DC power supply for Built-in T/R Switch Module.							
	Note: Underwater Mateable Connector is for uses underwater. Other connectors and wire leads are for dry uses and are not							
	waterproofed.							
	ΦD = Φ41.3 mm, Length ≥ 50.8 mm.	ΦD = Φ48 mm, Length ≥ 105 mm.						
Size:	Actual length depends on Mounting Parts and/or Add-on Parts su	uch as -TR, -IM, -HT, etc.						
	0.37 kg, 1m cable.	0.6 to 1.0 kg, 1m cable.						
Weight in Air:	Actual weight depends on Mounting Parts, Cable Types and Leng	th, and/or Add-on Parts such as -TR, -IM, -HT, etc.						
	1. Default: -10 °C to +60 °C or 14 °F to 140 °F.							
Operation Temperature:	2. Bespoke High Temperature Transducer: -10 °C to 120 °C, or 14	°F to 248 °F. Append HT to part number.						
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.							
	BII6000 Bespoke Impedance Matching between transducers a	nd power amplifiers. Order Separately as standalone devices or						
Impedance Matching at fs:	append -IMxx Ω to the part number for integrating BII6000 into the	transducer and specify impedance in Ω at fs. For example, BIIxxxx-						
	IM8Ω: BIIxxxx transducer with built-in Impedance Matching unit	as 8Ω load at fs.						
	BII2100 Transmitting & Receiving Switch Module with built-in Pr	eamp and Bandpass Filter. Order Separately as standalone devices						
TR Switch Module:	or append -TR to the part number for integrating BII2100 into the transducer. For example, BIIxxxx-TR: BIIxxxx transducer with built-							
	in T/R Switch Module.							
	1. Default: No built-in temperature sensor.							
Temperature Sensor:	2. Built-in temperature sensor. Append -TS to part number (BIIxx	xx-TS) for integrating a temperature sensor in the transducer.						
Power Amplifier:	BII5000 Power Amplifiers for SONAR, NDT, HIFU. Order Separate							
Potable Transmitter:	BII8030 series portable acoustic transmitters.							
Portable T/R System:	BII8080 series portable transmit and receive systems.							
		JCH THE WIRES BEFORE THE DRIVING SIGNAL IS SHUT DOWN. Cable						
shield must be grounded firn								
		MA/SMC shield of the signal source is firmly grounded for operating						
		C is not intended for hand-held use at voltages above 30Vac/60Vdc.						
,								

Wiring Information of a Transducer without T/R Switch.

Transducer Wiring:	Shielded Cable	Coax, BNC.	Underwater Connector	MIL-5015 Connector	XLR Plug
Signal:	White or Red	Center Contact	Contact 2	Contact C	Pin 2
Signal Common:	Black	Shield	Contact 1	Contact B	Pin 3
Shielding and Grounding	Shield	Shield	Contact 3	Contact A	Pin 1

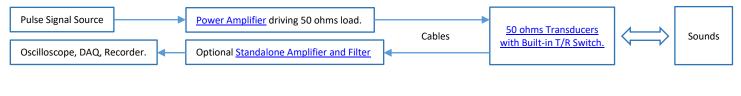
Wiring Information of Temperature Signal.

Temperature Sensor Wiring:	Shielded Cable	Coax, BNC, SMC, SMA	Underwater Connector	XLR Plug	TRS Plug
Signal:	White or Red	Center Contact	Contact 2	Pin 2	Тір
Signal Common:	Black	Shield	Contact 1	Pin 3	Ring
Shielding and Grounding	Shield	Shield	Contact 3	Pin 1	Sleeve

How to Order Transducers without T/R Switches. The default options are for stock items which are regularly available.

FH: Free Hangir	FH: Free Hanging. SC for Transmit: Shielded Cable (Rubber Jacket, 600V) with 2 conductors. Coax: 50 Ω Coaxial Cable. WL: Wire Leads.						
Part Number	-Appendage	-Mou	unting	-Cable Length	-Cable Type	-Connector for signals of Transmit and Temperature Sensor	
BII7524	Default:	Defa	ult:	Default:	SC for low frequency signal.	Default: WL.	
БП7524	None.	FH.		10m.	Coax for high frequency signal.	Default: WL.	
Example: Description							
BII7524-BFMSS	0.2m 5C LIMC		BII7524 Transducer, Bolt Fastening Mounting (Stainless Steel) (BFMSS), 0.3m Shielded Cable, Male Underwater Mateable				
DI17524-DFIVI55	-0.5111-3C-0101C		Connector.				
BII7524-HT-FH-	6m-RG178-BNC		BII7524	1 Transducer, Serv	vice Temperature: -10 °C to 120 °C,	or 14 °F to 248 °F. Free Hanging, 6m RG178 Coax, BNC Male.	
BII7524-IM50Ω	-FH-20m-RG58-BI	NC	BII7524	1 Transducer, Buil	t-in Impedance Matching Network	as 50 Ω load at fs, Free Hanging, 20m RG58 Coax, Male BNC.	
BII7524-IM8Ω-FH-10m-SC-XLR BII7524 Transducer, Built-in Impedance Matching Network as 8Ω load at fs, Free Hanging, 10m Shielded Cal				as 8Ω load at fs, Free Hanging, 10m Shielded Cable, XLR Plug.			
BII/5/4 - IS - IM/8() - EH - 10m - S(- M/1/18S)			BII7524 Transducer, Built-in Temperature Sensor, Built-in Impedance Matching Network to 8Ω at fs, Free Hanging, 10m Shielded Cable, Wire Leads for Transmit Signal, TRS for Temperature Signal.				

Benthowaye Instrument Inc.


Underwater Sound Solutions

http://www.benthowave.com

Specifications of Built-in T/R Switch for Sound Receiving with Transducer BII77524-TR or BII77524-TR-IMxxΩ.

Describe Description	Yes, Fixed Gain Preamp and Bandpass Filter are built inside transducer housing to receive sounds.					
Receiving Preamp and	1. Avoid saturation caused by strong sounds levels in low frequency range.					
Filter:	2. Avoid signal loss over cable.					
	3. Avoid signal loss caused by impedance matching network which is built inside transducers.					
Receiving Gain:	1. Default: 40 dB.					
	2. Bespoke: 20 dB to 60 dB.					
	1. Default: 2 to 200 kHz.					
-3dB Receiving Bandwidth:	2. Customized, Specify when ordering.					
-Sub Receiving bandwidth.	Minimum -3dB cut-off frequency of high pass filter: 2 kHz.					
	Band Pass Filter: 1 st order, 20/Decade Roll-off.					
Voltage Noise RTI en:	7.0 nV/VHz at default gain.					
Current Noise RTI in:	0.56 fA/VHz.					
Input Dynamic Range:	≥ 100 dB at 100 kHz Bandwidth.					
Output Signal Type:	Differential					
Output Impedance:	10 Ω					
Cable Drive Capability:	200 m					
Cable:	Four Conductor Shielded Cable					
Connector:	Refer to Connector Options.					
Signal Conditioning:	Standalone Programmable Gain Amplifier and Filters to compensate the loss of sound propagation and spreading. Order separately.					
Power Supply of Receiving C	ircuit					
Supply Voltage V _s :	+8.5 to +32 VDC					
Current (Quiescent):	6.8 mA					
	+9VDC Battery, Marine Battery, Automobile Battery, Fixed DC Linear Power Supply, Not Included.					
Suggested DC Supply:	DO NOT use variable power supply whose maximum supply voltage is higher than the above rated voltage.					
	DO NOT use switching mode DC power supply.					
DC Supply Cable:	Two Conductor Shielded Cable if the cable of Receiving Signal is Coax.					
DC Supply Connector:	Refer to Connector Options.					

System Setup of Transmitting and Receiving Sounds.

Wiring Information of Transmitting Sounds of a Transducer with T/R Switch.

Single Ended Signal:	Shielded Cable	Coax, BNC.	Underwater Connector	MIL-5015 Connector	XLR Plug	
Signal:	White or Red	Center Contact	Contact 2	Contact C	Pin 2	
Signal Common:	Black	Shield	Contact 1	Contact B	Pin 3	
Shielding and Grounding Shield Shield Contact 3 Contact A Pin 1						
Please contact us for bespoke wirings of differential transducers such as dipole, auadrupole, multimode rings, and flextensional sources.						

Wiring Information of Receiving Sounds of a Transducer with T/R Switch.

Differential Output:	Wire Leads	Underwater/XLR Connector	XLR + 9V Battery Snap	TRS + 9V Battery Snap	
+VDC	Red	Pin 3	Battery Female Snap	Battery Female Snap	
Common	Black	Pin 1	Battery Male Snap	Battery Male Snap	
Signal+	White	Pin 2	XLR Pin 2	TRS Tip	
Signal-	Blue, Green, or Yellow	Pin 4	XLR Pin 3	TRS Ring	
Signal Common	N/A	N/A	XLR Pin 1	TRS Sleeve	
Shielding	Shield	N/A	XLR Metal Shell	N/A	
4mm Banana Plug Pair	: Red Plug for +VDC, Black Plu	g for Common of the DC power supply		· · · · ·	

How to Order Transducers with T/R Switches. The default options are for stock items which are regularly available.

FH: Free Hanging. SC for Low Frequency Transmit: Shielded Cable (Rubber Jacket, 600V) with 2 conductors. Coax for High Frequency Transmit: 50 Ω Coaxial Cable. SC for Low Frequency Receive: Shielded Cable with 4 conductors. Coax for High Frequency Receive: 50 Ω Coaxial Cable. WL: Wire Leads. HPF: -3dB High Pass Filter Frequency. LPF: -3dB Low Pass Filter Frequency. Cable of Temperature sensor is two-conductor shielded cable. Cable of DC Supply is two-conductor shielded cable in case that receive cable is coax.

Part -Appendage Number	-Receive Gain -H	HPF/LPF	-Mounting	-Cable Length	-Cable Type	-Connector for signals of Transmit/ Receive/DC Supply/Temperature
------------------------------	------------------	---------	-----------	---------------	-------------	--

Benthowaye Instrument Inc.

Page 4 of 5

Underwater Sound Solutions

http://www.benthowave.com

BII7524	Default: TRIM50Ω	Default: 40 dB	-3dB Receiving bandpass Frequencies. Default: 2 to 200 kHz.		Default: FH.	Default: 10m.	Default: SC or Coax	Default: WL .
Example:	Example:							
	BII7524-TR-IM50Ω-40dB-2kHz/200kHz-BFMSS-10m- SC-MIL/XLR/BS			Gain: 40dB, Recei	iving Bandpass Fi	ilter: 2kHz to 20	0kHz. Bolt-faste	g Network as 50Ω load at fs, Receiving ning Mounting (Stainless Steel), 10m eceive Signal, 9V Battery Snap for DC
BII7524-TS-TR-IM50Ω-40dB-2kHz/200kHz-BFMSS- 10m-SC-MIL/XLR/BS/TRS			Network as 50Ω lo	oad at fs, Receivin ss Steel), 10m Sh	g Gain: 40dB, Red ielded Cable, MI	ceiving Bandpass L-5015 Connecto	witch, Built-in Impedance Matching 5 Filter: 2kHz to 200kHz. Bolt-fastening or for Transmit Signal, XLR for Receive	

Question:

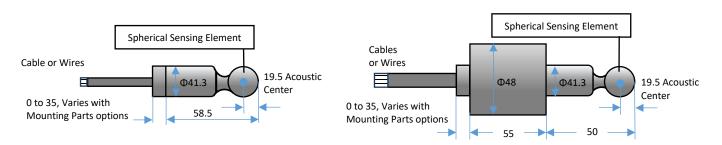
What if the mating connector of my DAQ module or recording device is NOT available from BII?

1. Buyer may order BII products with wire leads, and buyer assembles the mating connector to the cable end.

2. A connector adaptor might be assembled by BII by customization, and BII ships the adaptor to buyer as accessory of the device. Please contact BII for customizations.

3. Many adaptors for standard connectors are available in worldwide electronic suppliers such as BNC to SMA, BNC to SMC, XLR to TRS, etc. Check out your local suppliers.

What are the advantage and disadvantage of a built-in T/R Switch Module comparing to a standalone T/R Switch Module?

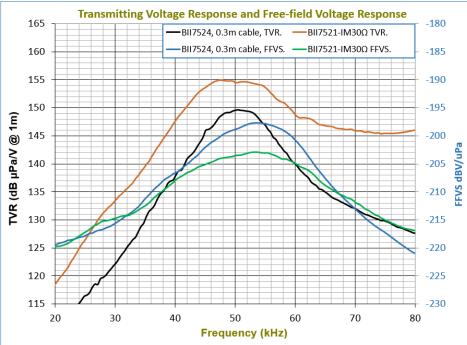

A built-in T/R Switch Module amplifies the received signal of the sensing element before the signal is polluted by EMI noises and system ground loop noises, and before it is attenuated by capacitance, inductance, and resistance of cables. But its price is a little bit higher than standalone T/R Switch Module.

Cable and Connector Information for High Power Signals (from Power Amplifier and to Transducers). Non-UL Uses.

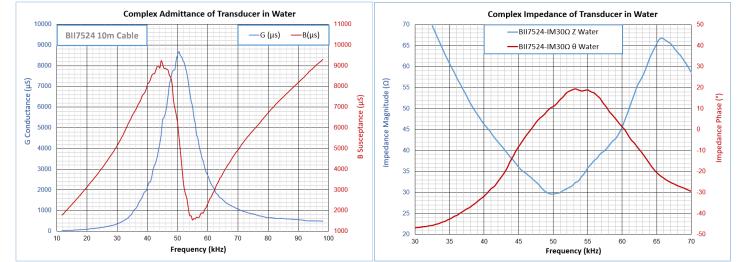
	Wire and Cable Types	Ratings of Voltage, Current or Power, and Temperature.			
	AWG18 Wires (WR)	3000 Vrms, 10 Arms.			
	Two Conductor Shielded Cable (SC)	600 Vrms, 5 Arms.			
Cable:	High Temperature Shielded Cable (HTSC199)	600 Vrms, 6 Arms, up to +199°C or 390 °F, Non-waterproof.			
	Coax RG58 (50Ω) (RG58)	1400 Vrms, 4 Arms.			
	Coax RG174/U (50Ω) (RG174)	1100 Vrms, 1.6 Arms.			
	Coax RG178B/U (50Ω) (RG178).	750 Vrms, 0.86 Arms, up to +200°C or 390°F.			
	Connector Type	Ratings of Voltage, Current or Power, and Temperature.			
	1. Wire Leads (WL)	Used for Cables or Wires.			
	2. 50Ω BNC (BNC), Bayonet Lock. Panel Mount or In-line.	500Vrms, 316W.			
	In-line BNC: Input uses Pin, output uses Socket.	-65°C to 165°C, or -53.9°F to 329°F.			
	Panel Mount BNC: Both Input and Output use BNC Jacks.	Used for Grounded Signal with Metal Enclosures or Coax Cables.			
Connector:	3. MIL-5015 Type Connector (MIL), Thread Fastening.	500Vrms, 13 A; Up to +125°C or 257°F, or,			
Connector.	Panel Mount or In-line. Input uses Pin, output uses Socket.	900Vrms, 13 A; Up to +125°C or 257°F.			
	Parlet Mount of In-line. Input uses Pin, output uses socket.	Used for Metal Enclosures or Shielded Cables.			
	4. XLR Connector (XLR), Positive Latchlock.	133Vrms, 15 A; -25°C to +75°C or -13°F to +167°F.			
	Panel Mount or In-line. Input uses Pin, output uses Socket.	Used for Metal Enclosures or Shielded Cables.			
	5. Underwater Mateable Connector (UMC), Thread Fastening.	600Vrms, 10A. Waterproof, IP68.			
	Panel Mount or In-line. Input uses Pin, output uses Socket.	Used for Metal Enclosures or Shielded Cables.			
How to choos	e cable and connector for BII devices: Driving Voltage V _{drive} (V _{rms}) = \sqrt{Po}	$\overline{Wer * R_L} = \sqrt{Power/G}$. R _L : Resistance of a transducer in load medium at f _{s.}			
	ce at fs: R_L = 1/G at fs . BII lists G-B data at fs and/or the graph of G-B vs F				
Case 1. Delive	er 1000 Wrms to 3 k Ω transducer at fs. Note: the 3 k Ω is the resistance of	f the transducer in load medium at fs.			
Driving voltag	e to transducer V _{drive} = $\sqrt{1000 * 3000}$ = 1732 V _{rms} . The current to 3 kΩ tr	ransducer I _{drive} = V_{drive}/R_L = 1732Vrms/3000 Ω = 0.57733 A _{rms} .			
	VG18 Wire and Wire leads are suitable.				
Case 2. Delive	er 500 Wrms to 300 Ω transducer at $f_s.$ Note: the 300 Ω is the resistance	of the transducer in load medium at fs.			
Driving voltag	e to transducer V _{drive} = $\sqrt{500 * 300}$ = 387.3 V _{rms} . The current to 300 Ω tra	ansducer I drive = V_{drive}/R_L = 387.3Vrms/300 Ω = 1.291 Arms.			
Therefore, Tw	o Conductor Shielded Cable and MIL-5015 Type Connector or Underwat	er Mateable Connector (UMC) are suitable.			
Case 3. Delive	er 300 Wrms to 50 Ω transducer at f _s .				
Driving voltag	e to transducer V _{drive} = $\sqrt{300 * 50}$ = 122.5 V _{rms} . The current to 50 Ω trans	sducer I _{drive} = V_{drive}/R_L = 122.5Vrms/50 Ω = 2.45A _{rms} .			
	Ω RG58 Coax and BNC are suitable.				

Physical Size without IM, TR, or TRIM (unit: mm):

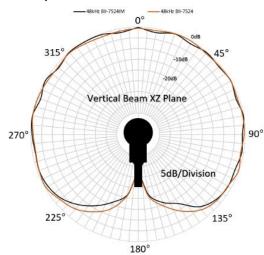
Physical Size with IM, TR, or TRIM (unit: mm):

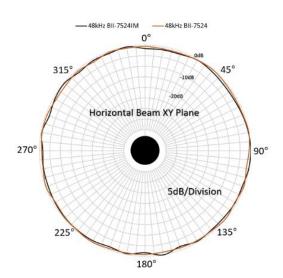


Benthowaye Instrument Inc. Underwater Sound Solutions


http://www.benthowave.com

TVR (Transmitting Voltage Response) and FFVS (Free-field Voltage Response):




Admittance

Bespoke Admittance of BII7524-IM30Ω

