

Benthowaye Instrument Inc.

Underwater Sound Solutions

BII7731 Series Broadband Transducer: Low Qm, Single and Dual Beams.

BII's broadband (low Q_m) transducers are customized with conical beamwidth and operating frequency, and offer flexible, custom-fit solutions to wide bandwidth requirements of underwater and ultrasonic acoustic systems (SONAR, NDT, AE). The transducer consists of single disc element which provide single beam for transmitting and/or receiving.

When the transducer is used to detect acoustic emission (AE) and NDT ultrasonic waves, the couplant (water, gel, grease, oils and commercial couplant) is a necessary material to provide efficient acoustic coupling between the transducer face and the piece under test.

Custom-fit Applications	
Underwater Communication and Telephone	NDT, AE, Process Control, Diagnostics, Material Research, and Air Acoustics
Artificial Acoustic Target, Echo-Repeater Target, Active-Acoustic Target	Synthetic Aperture Imaging and Synthetic Aperture Sequential Imaging
High Resolution Sonar, Chirp/FM Sonar	Pinger/Locator/Transponder/Acoustic Positioning/Tracking
Direction-finding Sonar, Navigation, Obstacle Avoidance	Fishery Sonar, Bioacoustics, Marine Animal Behavior Research

Broadband Transducer	BII7731	ΒΙΙ7731-ΙΜ50Ω						
	Available from 30 to 500 kHz, Custom-fit.							
Resonant Frequency fs:	In-stock elements: 30, 40, 50, 60, 70, 100, 120, 150, 200, 250,	, 300, 400, and 500 kHz, ± 2% to ± 10%.						
	$f_{s} \pm 20\% * f_{s}$	$f_{s} \pm 25\% * f_{s}$						
Transmitting Frequency:	Minimum Transmitting Frequency: None.	Minimum Transmitting Frequency: TBD. To be determined.						
	No.	Built-in, Impedance matching to 50Ω by default.						
	TVR and FFVS variation of a transducer with built-in Impedan							
Impedance Matching:	1. When $R_{IM} < 1/G$, TVR increases, FFVS decreases. Generally,							
	2. When $R_{IM} > 1/G$, TVR decreases, FFVS increases. Generally, this is true for high frequency transducers.							
	R_{IM} : Impedance-Matched Resistance such as 50 Ω . G: Transdu							
Signal Type:	Spike (Negative or Positive), Pulsed SINE, Chirp, PSK, FSK, Puls							
Aperture:	Disc							
Operation Modes:	Transmit and/or Receive Sounds.							
Directivity Pattern:	Conical Beam							
	Custom-fit. λ : Sounds Wavelength in Load Medium.							
-3dB Beam Width θ _{-3dB} :	Main Lobe $\theta_{-3dB} = 58.9^* \lambda/D$, in °. Disc Diameter: D.							
· · · · · · · · · · · · · · · · · · ·	Main Lobe $\theta_{-3dB} = 56.5$ // D , in . Disc Diameter. D.1. Default: ≤ -17.8 dB when $\theta_{-3dB} < 49^\circ$; No side lobe when $\theta_{-3dB} \ge 49^\circ$.							
Side Lobe Level:	2. Customized side lobe suppression is available: \leq -30 dB3d							
Free Capacitance C _f :	TBD, to be determined.	N/A						
Dissipation D:	TBD, to be determined.	N/A						
	Typical 3. Varies from 2.5 to 5.	· ·						
Quality Factor Q _m at f _s :		Typical 3. Varies from 2 to 5.						
	-3dB bandwidth $\Delta f = f_s/Q_m$. Qm determines the transient resp	· · ·						
η _{ea at fs} at fs:	0.3 to 0.8 in Water, Electroacoustic Efficiency, Load Medium Dependent.							
	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^*\Phi D)^2$. Wave Number k = 2π	t/λ ; ΦD = Transducer Diameter.						
	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^*\Phi D)^2$. Wave Number k = 2π 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d	t/λ ; ΦD = Transducer Diameter. rops gradually at f > fs, so it is NOT recommended for transducers						
	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^*\Phi D)^2$. Wave Number k = 2π 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis	t/λ ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating.						
	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^* \Phi D)^2$. Wave Number k = 2π 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far	t/λ ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating.						
η _{ea} at f << fs:	at f << fs, $\eta_{ea} / \eta_{ea} at fs \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2^*MIPP at f \ge 1.3*fs .	t/λ ; $\Phi D = Transducer Diameter. rops gradually at f > fs, so it is NOT recommended for transducers f se, transducer may be damaged by overheating. r from fs. For example, input power Pi \leq \eta_{ea}*MIPP at f \leq 0.8*fs and Pi$						
η_{ea} at f << fs: Power Factor at fs:	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^* \Phi D)^2$. Wave Number k = 2π 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far	$t/\lambda; \Phi D = Transducer Diameter. rops gradually at f > fs, so it is NOT recommended for transducers to se, transducer may be damaged by overheating. r from fs. For example, input power Pi \leq \eta_{ea}*MIPP at f \leq 0.8*fs and Pi\geq 0.94$						
η _{ea} at f ≪ fs: Power Factor at fs:	at f << fs, $\eta_{ea} / \eta_{ea} at fs \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2^*MIPP at f \ge 1.3*fs .	$t/\lambda; \Phi D = Transducer Diameter. rops gradually at f > fs, so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from fs. For example, input power P1 \leq \eta_{ea}*MIPP at f \leq 0.8*fs and P1\geq 0.94140 to 190 ± 2 dB µPa/V@1m for BII7731-IM50Ω.$						
η _{ea} at f ≪ f₅: Power Factor at f₅:	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2 *MIPP at f \geq 1.3*fs. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m.	t/λ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers the set transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P _i ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω.						
η _{ea} at f << f₅: Power Factor at f₅: TVR at f₅:	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response.	t/λ ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω.						
η _{ea} at f << fs: Power Factor at f₅: TVR at f₅:	at f << fs, η_{ea} / η_{ea} at fs $\approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at f << fs and d emit high power sounds at frequencies far from fs. Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2 *MIPP at f \geq 1.3*fs. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m.	t/λ ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} .						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL:	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response.	t/λ ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL:	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV _i + TVR, dB µPa@1m. Driving Voltage V _i is in unit TBD, to be determined, or refer to G-B Graph .	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL:	at $f << f_{s}$, η_{ea} / η_{ea} at $f_{s} \approx 0.1225^{*}(k^{*}\Phi D)^{2}$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_{s}$ and d emit high power sounds at frequencies far from f_{s} . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^{*}f_{s}$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%:	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%:						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance:	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV _i + TVR, dB µPa@1m. Driving Voltage V _i is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = \sqrt{(MIPP/G_{max})}$ or 300 or 600 , whichever is less, in V_{rms} .	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = v(MIPP * Z), in V _{rms} . Z is impedance at fs.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s :	at $f << f_{s}$, η_{ea} / η_{ea} at $f_{s} \approx 0.1225^{*}(k^{*}\Phi D)^{2}$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_{s}$ and d emit high power sounds at frequencies far from f_{s} . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^{*}f_{s}$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle:	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = v(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle:						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s :	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = \sqrt{(MIPP/G_{max})}$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = \sqrt{(MCIP/G_{max})}$, in V_{rms} .	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} .						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .)	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V_{rms} . To achieve higher sound level, built-in impedance matching is	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax:} Maximum V _i .) Input Power P _i :	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = \sqrt{(MIPP/G_{max})}$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = \sqrt{(MCIP/G_{max})}$, in V_{rms} . To achieve higher sound level , built-in impedance matching is P ₁ = V ₁ ² * G. Refer to G-B Graph : G is conductance.	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s .						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax:} Maximum V _i .) Input Power P _i : MIPP at f _s :	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V_{rms} . To achieve higher sound level , built-in impedance matching is $P_1 = V_1^2 * G$. Refer to G-B Graph: G is conductance. Maximum Input Pulse Power at $f_s: P_1 = V_1^2 * G_{max}$ or up to 5000	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax:} Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s :	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V_{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V_{rms} . To achieve higher sound level , built-in impedance matching is $P_i = V_i^2 * G$. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_i = V_i^2 * G_{max}$ or up to 5000	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers set, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ted.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s :	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level , built-in impedance matching is $P_1 = V_1^2 * G$. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_1 = V_1^2 * G_{max}$ or up to 5000 Maximum Pulse Width at MIPP and at f_s . TBD, to be determined Up to 200 Watts, Maximum Continuous Input Power at f_s . TBD	\sqrt{J} ; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined.						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s : How to determine pulse with	at $f << f_{s}$, η_{ea} / η_{ea} at $f_{s} \approx 0.1225^{*}(k^{*}\Phi D)^{2}$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_{s}$ and d emit high power sounds at frequencies far from f_{s} . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^{*}f_{s}$. 0.4 to 0.9. 140 to 190 ± 2 dB µPa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB µPa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level , built-in impedance matching is $P_1 = V_1^{2*}$ G. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_{s} : $P_1 = V_1^{2*}$ G _{max} or up to 5000 Maximum Pulse Width at MIPP and at f_{s} . TBD, to be determind Up to 200 Watts, Maximum Continuous Input Power at f_{s} . TBI 300 300	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined. rer) at f _s :						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V ₁ at f _s : (V _{imax} : Maximum V ₁ .) Input Power P ₁ : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s : How to determine pulse win 1. Determine the input pulse	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level, built-in impedance matching is P ₁ = V ₁ ² * G. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_1 = V_1^2 * G_{max}$ or up to 5000 Maximum Pulse Width at MIPP and at f_s . TBD, to be determin Up to 200 Watts, Maximum Continuous Input Power at f_s . TBI 3th, duty cycle and off-time with input pulse power (peak powe	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined. rer) at f _s :						
η_{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s : MCIP at f _s : MCIP at f _s : MOLIP at f _s	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level, built-in impedance matching is P ₁ = V ₁ ² * G. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_1 = V_1^2 * G_{max}$ or up to 5000 Maximum Pulse Width at MIPP and at f_s . TBD, to be determin Up to 200 Watts, Maximum Continuous Input Power at f_s . TBI 3th, duty cycle and off-time with input pulse power (peak powe $W^*(120^\circc-T)/103^\circc)/IPP$. T: Water Temperature in °c.	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined. rer) at f _s :						
η_{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s : MCIP at f _s : How to determine pulse wind 1. Determine the input pulse 2. Pulse Width \leq (MIPP * MF 3. Duty Cycle D \leq MCIP*(120)	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level, built-in impedance matching is P ₁ = V ₁ ² * G. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_1 = V_1^2 * G_{max}$ or up to 5000 Maximum Pulse Width at MIPP and at f_s . TBD, to be determin Up to 200 Watts, Maximum Continuous Input Power at f_s . TBI 3th, duty cycle and off-time with input pulse power (peak powe $W^*(120^\circc-T)/103^\circc)/IPP$. T: Water Temperature in °c.	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined. rer) at f _s :						
η _{ea} at f << f _s : Power Factor at f _s : TVR at f _s : Radiation Sound Level SL: Admittance or Impedance: Driving Voltage V _i at f _s : (V _{imax} : Maximum V _i .) Input Power P _i : MIPP at f _s : MPW at MIPP and f _s : MCIP at f _s : How to determine pulse win 1. Determine the input pulse	at $f << f_s$, η_{ea} / η_{ea} at $f_s \approx 0.1225^*(k^*\Phi D)^2$. Wave Number $k = 2\pi$ 1. Electroacoustic Efficiency η_{ea} is quite low at $f << f_s$ and d emit high power sounds at frequencies far from f_s . Otherwis 2. Transducer can emit low power sounds at frequencies far 0.2*MIPP at $f \ge 1.3^*f_s$. 0.4 to 0.9. 140 to 190 ± 2 dB μ Pa/V@1m. Transmitting Voltage Response. SL = 20*logV ₁ + TVR, dB μ Pa@1m. Driving Voltage V ₁ is in unit TBD, to be determined, or refer to G-B Graph . Pulsed Driving Signal and Duty Cycle D < 100%: $V_{imax} = V(MIPP/G_{max})$ or 300 or 600 , whichever is less, in V _{rms} . Continuous Operation at 100% Duty Cycle: $V_{imax} = V(MCIP/G_{max})$, in V _{rms} . To achieve higher sound level, built-in impedance matching is P ₁ = V ₁ ² * G. Refer to G-B Graph : G is conductance. Maximum Input Pulse Power at f_s : $P_1 = V_1^2 * G_{max}$ or up to 5000 Maximum Pulse Width at MIPP and at f_s . TBD, to be determin Up to 200 Watts, Maximum Continuous Input Power at f_s . TBI 3th, duty cycle and off-time with input pulse power (peak powe $W^*(120^\circc-T)/103^\circc)/IPP$. T: Water Temperature in °c.	$\sqrt{\lambda}$; ΦD = Transducer Diameter. rops gradually at f > f _s , so it is NOT recommended for transducers se, transducer may be damaged by overheating. r from f _s . For example, input power P _i ≤ η _{ea} *MIPP at f ≤ 0.8*f _s and P ≥ 0.94 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM50Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM8Ω. 140 to 190 ± 2 dB μPa/V@1m for BII7731-IM5Ω. of V _{rms} . 1. Default: Z = 50*e ^{iθ} , in Ω, and Phase Angle θ ≤ 20° at fs. 2. Customization. Pulsed Driving Signal and Duty Cycle D < 100%: V _{imax} = V(MIPP * Z), in V _{rms} . Z is impedance at fs. Continuous Operation at 100% Duty Cycle: V _{imax} = V(MCIP * Z), in V _{rms} . s recommended to step up driving voltage inside the transducer. P _i = V _i ² / Z at f _s . Z is impedance at f _s . D Watts, whichever is less. TBD, to be determined. ned. D, to be determined. rer) at f _s :						

Г

Benthowaye Instrument Inc.

٦

 Underwater Sound Solutions
 www.benthowave.com

 TBD, to be determined.
 -195.0 to -170.0 ± 2 dB V/μPa for BII7731-IM8Ω

 Free-field Voltage Sensitivity.
 -195.0 to -170.0 ± 2 dB V/μPa for BII7731-IM8Ω

	TBD, to be determined.	-195.0 to -170.0 \pm 2 dB V/µPa for BII7731-IM8Ω.					
	Free-field Voltage Sensitivity.	-195.0 to -170.0 ± 2 dB V/μPa for BII7731-IM5Ω.					
	Sensitivity Loss over extension cable at $f_s(dB) = 20 * 1$	$\log \left\{ \frac{(1 + 2\pi f_s C_c / B)}{\sqrt{[G^2 + (B + 2\pi f_s C_c)^2]/(G^2 + B^2)}} \right\}$					
	G: Conductance at fs; B: Susceptance at fs; Cc: Capacitance of I						
	Please refer to online document AcousticSystem.pdf for conv	version between G-B and Z-θ, if necessary.					
Receiving Sound Level SL:	SL = $20*\log V_{\circ}$ - FFVS, dB µPa. Receiving Voltage V _o is in unit of	f V _{rms} .					
	Maximum, 300 m, or 3 MPa Pressure.						
Operating Depth:	Limited by the cable length if the cable has wire leads or a no	n-waterproof connector.					
	1. Default: Free Hanging (FH)	··· · · · · · · · · · · · · · · · ·					
	2. Thru-hole Mounting with Single O-ring (THSO)						
	3. Thru-hole Mounting with Double O-ring (THDO)						
	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)						
Mounting Options:	5. End-face Mounting (EFM)						
	6. Flange Mounting (FGM)						
	7. Flush Mounting (FSM)						
	Please refer to online document AcousticSystem.pdf for a co	mplete list of Mounting Options and more details.					
	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket.						
	SC with Two Conductors for transmit signal; SC with 4 cond	ductors for receive signal.					
	2. 50 Ω RG58 Coax (RG58)	C C					
	3. 50 Ω RG174/U Coax (RG174)						
	4. 50 Ω RG178/U Coax (RG178) (Operating Temperature Rang	ge: -70°C To +200°C)					
		t, ΦD=3.2 mm (SC32), up to 200°C, AWG26 Conductors (Not Water-					
Cable Options:	proofed, ONLY for Dry Air Use).						
	6. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacke	et, ΦD=4.0 mm (SC40), up to 200°C, AWG20 Conductors (Not Water-					
	proofed, ONLY for Dry Air Use).						
	7. Two Conductor Unshielded Cable (USC)						
	Handling: Do not use the cable to support transducer weight in air and water if the transducer has a mounting part. Do not bend						
	the cable.						
Cable Length:	1. Default: 1 m. 2. Custom-fit.						
-	1. Default: Wire Leads (WL), for Transmit, Receive Signal, and DC Power Supply.						
	2. Underwater Mateable Connector (pin) (UMC) (Max. Diameter Φ21.5 to Φ35 mm), for Transmit or Receive Signal.						
	3. MIL-5015 Style (pin) (MIL) (Max. Diameter Φ19 to Φ30 mm), for Transmit or Receive Signal.						
	4. XLR Plug (pin) (XLR). (Max. Diameter Φ20.2 mm), for Transmit or Receive Signal.						
	5. Male BNC (BNC) (Max. Diameter Φ14.3 mm), for Transmit or Receive Grounded Signal.						
Connector Options:	BNC with RG178 Coax: Service Temperature up to 165°C or 329°F.						
	6. 1/8" (3.5mm) TRS Plug (TRS) (Max. Diameter Φ10.5 mm), for Receive Signal ONLY.						
	7. +9VDC Battery Snap (BS), +9VDC or +18VDC power supply for Built-in T/R Switch Module.						
	8. 4mm Banana Plug Pair (Red and Black Color) (BP), DC powe	er supply for Built-in T/R Switch Module.					
	Note: Underwater Mateable Connector is for uses underwater. Other connectors and wire leads are for dry uses and are not						
	waterproofed.						
Physical Size:	Maximum Housing Diameter: ΦD ≤ 168 mm, Height: TBD, To						
Thysical Size.	Actual length depends on Mounting Parts and/or Add-on Part	ts such as -TR, -IM, -HT, etc.					
Waight in Air:	≥ 0.55 kg with 10 m cable.						
Weight in Air:	Actual weight depends on Mounting Parts, Cable Types and L	ength, and/or Add-on Parts such as -TR, -IM, -HT, etc.					
Operation Temperatures	1. Default: -10 °C to +60 °C or 14 °F to 140 °F.						
Operation Temperature:	2. Bespoke High Temperature Transducer: -10 °C to 120 °C, or	r 14 °F to 248 °F. Append -HT to part number.					
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.						
	BII6000 Bespoke Impedance Matching between transducer	s and power amplifiers. Order Separately as standalone devices or					
	append -IMxx Ω to the part number for integrating BII6000 int	o the transducer and specify impedance in Ω at fs. For example, BIIxxxx					
Impedance Matching at fs:	IM8 Ω : Bllxxxx transducer with built-in Impedance Matching unit as 8Ω load at fs.						
	Phase Angle $ \theta $ of Complex Impedance $\leq 20^{\circ}$ at fs.						
	BII2100 Transmitting & Receiving Switch Module with Built-ir	n Preamp and Bandpass Filter. Order Separately as standalone devices					
TR Switch Module:		the transducer. For example, BIIxxxx-TR: BIIxxxx transducer with built-					
	in T/R Switch Module.						
	1. Default: No built-in temperature sensor.						
Temperature Sensor:	 <u>Built-in temperature sensor</u>. Append -TS to part number (Bllxxxx-TS) for integrating a temperature sensor in the transducer. 						
Power Amplifier:	BII5000 Power Amplifiers for SONAR, NDT, HIFU. Order Separately as standalone devices.						
Potable Transmitter:							
	BII8030 series portable acoustic transmitters.						
Portable T/R System:	BII8080 series portable transmit and receive systems.						
	en e	TOUCH THE WIRES BEFORE THE DRIVING SIGNAL IS SHUT DOWN. Cable					
shield must be grounded firr							
		C/SMA/SMC shield of the signal source is firmly grounded for operating					
satety before hooking up tra	nsoucer/hydrophone to the signal source. Coax with BNC/SMA/	SMC is not intended for hand-held use at voltages above 30Vac/60Vdc					

Wiring Information of a Transducer without T/R Switch.

Transducer Wiring:	Shielded Cable	Coax, BNC.	Underwater Connector	MIL-5015 Connector	XLR Plug
Signal:	White or Red	Center Contact	Contact 2	Contact C	Pin 2
Signal Common:	Black	Shield	Contact 1	Contact B	Pin 3
Shielding and Grounding	Shield	Shield	Contact 3	Contact A	Pin 1

Benthowaye Instrument Inc.

Underwater Sound Solutions

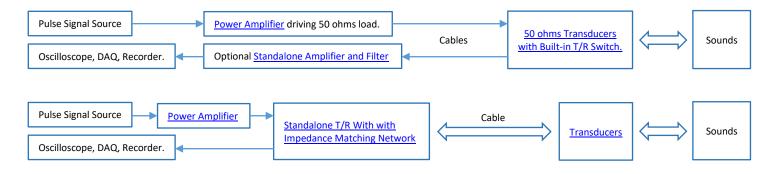
www.benthowave.com

1 ag

Wiring Information of Temperature Signal.

Temperature Sensor Wiring:	Shielded Cable	Coax, BNC, SMC, SMA	Underwater Connector	XLR Plug	TRS Plug
Signal:	White or Red	Center Contact	Contact 2	Pin 2	Тір
Signal Common:	Black	Shield	Contact 1	Pin 3	Ring
Shielding and Grounding	Shield	Shield	Contact 3	Pin 1	Sleeve

Order Custom-fit Transducers (Projectors) without T/R Switches. A specific option which is not necessary can be ignored.


EH: Free Hanging SC for Transmit: Shielded Cable (Rubber Jacket, 600V) with 2 conductors, Coax: 50 O Coaxial Cable, WL: Wire Leads

P/N	-fs	-Appendage	-BW		-SLL	-Mounting	-Cable Length	-Cable Type	-Connectors for Transmit Signal and Temperature Sensor
BII7731	Frequency, In kHz.	Default: None .	-3dB Con Beam Wi		Maximum Side Lobe Level, in dB	Default: FH .	Default: 10m.	SC or Coax	Default: WL .
Example o	of Part Number:			Descripti	on				
BII7731-30kHz/30°-BFMSS-1m-SC-UMC				BII7731 Transducer, fs: 30kHz; Conical Beam Angle: 30°; Bolt Fastening Mounting (Stainless Steel); 1m Shielded Cable; Underwater Mateable Connector.					
BII7731-100kHz-IM50Ω-10°-30dB-BFMSS-30m-SC-WL				BII7731 Transducer, fs: 100kHz; Built-in Impedance Matching as 50Ω Load at fs; Conical Beam Angle: 10°; Side lobe Level: <-30dB; Bolt Fastening Mounting (Stainless Steel); 30m Shielded Cable; Wire Leads.					
BII7731-70kHz-TS-IM50Ω-10°-FH-30m-SC-WL/TRS				fs; Conic				-	mpedance Matching as 50Ω Load at re Leads for Transmitting Signal, TRS

Specifications of Built-in T/R Switch for Sound Receiving with Transducer BII7731-TR or BII7731-TR-IMxxΩ.

	Yes, Fixed Gain Preamp and Bandpass Filter are built inside trar	orducer housing to receive sounds						
Receiving Preamp and	1. Avoid saturation caused by strong sounds levels in low frequ							
Filter:	2. Avoid signal loss over cable.							
Ther.	 Avoid signal loss over cable. Avoid signal loss caused by impedance matching network which is built inside transducers. 							
	1. Default: 40 dB	1. Default: 40 dB						
Receiving Gain:	2. Bespoke: 0 dB to 60 dB.	2. Bespoke: 20 to 60 dB.						
	1. Default: 2 to 450 kHz.	1. Default: 10 kHz to 10 MHz.						
	2. Customized with fs, specify when ordering.	2. Customized with fs, specify when ordering.						
-3dB Receiving Bandwidth:	· · · · · · · · · · · · · · · · · · ·	z. custoffized with is, specify when ordening.						
	Minimum -3dB cut-off frequency of high pass filter: 2 kHz.							
Malla an Alaine DTL -	Band Pass Filter: 1st order, 20/Decade Roll-off.							
Voltage Noise RTI en:	7.0 nV/vHz at default gain. 1.0 nV/vHz at default gain.							
Current Noise RTI in:	0.56 fA/VHz. 1.6 pA/VHz.							
Input Dynamic Range:	≥ 100 dB at 100 kHz Bandwidth.							
Output Signal Type:	Differential	Single-ended						
Output Impedance:	10 Ω	50 Ω						
Cable Drive Capability:	200 m	1000 m						
Cable:	Four Conductor Shielded Cable	Four Conductor Shielded Cable or Two Coaxial cables. Cable type being used is determined by frequency range and cable length.						
Connector:	Refer to Connector Options.	·						
Signal Conditioning:	Standalone Programmable Gain Amplifier and Filters to competence	nsate the loss of sound propagation and spreading. Order separately.						
Power Supply of Receiving C	lircuit							
Supply Voltage V₅:	+8.5 to +32 VDC	+7.5 to +32 VDC						
Current (Quiescent):	6.8 mA 8 mA							
	+9VDC Battery, Marine Battery, Automobile Battery, Fixed DC L	inear Power Supply, Not Included.						
Suggested DC Supply:	DO NOT use variable power supply whose maximum supply voltage is higher than the above rated voltage.							
	DO NOT use switching mode DC power supply.							
DC Supply Cable:	Two Conductor Shielded Cable if the cable of Receiving Signal is Coax.							
DC Supply Connector:	Refer to Connector Options.							

System Setup of Transmitting and Receiving Sounds.

Page 3 of 6

Benthowaye Instrument Inc. Underwater Sound Solutions www.bentho

www.benthowave.com

Wiring Information of Transmitting Sounds of a Transducer with T/R Switch.

Transducer Wiring:	Shielded Cable	Coax, BNC.	Underwater Connector	MIL-5015 Connector	XLR Plug		
Signal:	White or Red	Center Contact	Contact 2	Contact C	Pin 2		
Signal Common:	Black	Shield	Contact 1	Contact B	Pin 3		
Shielding and Grounding Shield Shield Contact 3 Contact A Pin 1							
Please contact us for bespok	e wirings of differential	transducers such as dipole, quad	upole, multimode rings, and flex	tensional sources.			

Wiring Information of Receiving Sounds of a Transducer with T/R Switch.

Differential Output:	Wire Leads	Underwater/XLR Conne	ctor	XLR + 9V Battery Snap	TRS + 9V Battery Snap
+VDC	Red	Pin 3		Battery Female Snap	Battery Female Snap
Common	Black	Pin 1		Battery Male Snap	Battery Male Snap
Signal+	White	Pin 2		XLR Pin 2	TRS Tip
Signal-	Blue, Green, or Yellow	Pin 4		XLR Pin 3	TRS Ring
Signal Common	N/A	N/A		XLR Pin 1	TRS Sleeve
Shielding	Shield	N/A	N/A		N/A
Cincela Frederid Octorete	Mire Leede	BNC Male,	Underwater/XLR	XLR Plug and	TRS Plug and
Single Ended Output:	Wire Leads	9V Battery Snap	Connector	9V Battery Snap	9V Battery Snap
+VDC	Red	Female Snap	Pin 3	Battery Female Snap	Battery Female Snap
Common	Black	Male Snap	Pin 1	Battery Male Snap	Battery Male Snap
Signal	White	Center Pin or Contact	Pin 2	XLR Pin 2	TRS Tip
Signal Common	Blue, Green, or Yellow	BNC Shield	Pin 4	XLR Pin 1 and Pin 3	TRS Ring and Sleeve
Shielding	Shield	N/A	N/A	XLR Metal Shell	N/A

4mm Banana Plug Pair: Red Plug for +VDC, Black Plug for Common of the DC power supply.

How to Order Transducers with T/R Switches. A specific option which is not necessary can be ignored.

FH: Free Hanging. SC for Low Frequency Transmit: Shielded Cable (Rubber Jacket, 600V) with 2 conductors. Coax for High Frequency Transmit: 50 Ω Coaxial Cable. SC for Low Frequency Receive: Shielded Cable with 4 conductors. Coax for High Frequency Receive: 50 Ω Coaxial Cable. WL: Wire Leads. HPF: -3dB High Pass Filter Frequency. LPF: -3dB Low Pass Filter Frequency. Cable of Temperature sensor is two-conductor shielded cable. Cable of DC Supply is two-conductor shielded cable in case that receive cable is coax.

Part Number	-fs	-Appendage	-BW		-Receive Gain	-HPF/LPF of Receiving	-Mounting	-Cable Length	-Cable Type	- Connector for signals of Transmit/Receive/DC Supply/Temperature
BII7731	Frequency, In kHz.	Default: - TR-IM50Ω	-3dB Con Beam Wi in°.		Default: 40 dB	-3dB bandpass Frequencies. Minimum HPF: 2kHz.	Default: FH.	Default: 10m.	Default: SC or Coax	Default: WL .
Example:				Desc	ription					
BII7731-30kHz-TR-IM50Ω-50°-40dB-2kHz/100kHz- BFMSS-30m-SC-MIL/XLR/BS			Coni Mou Signa	cal Beam Wi nting (Stainle al, 9V Battery	dth: 50°; Receive G ess Steel); 30m Shie Snap for DC Supply	iain: 40dB, Rec Ided Cable; MII	eive Bandpa 5015 Conne	ss Filter: 2kH ector for Tran	hing as 50Ω load at fs; -3dB z to 100kHz; Bolt-fastening smit Signal, XLR for Receive	
BII7731-50kHz-TS-TR-IM50Ω-10°-40dB- 10kHz/100kHz-BFMSS-10m-SC-MIL/XLR/BS/TRS			Mato Filte	ching Networ r: 10kHz to nector for Tra	k as 50Ω load at fs, 100kHz. Bolt-faste	-3dB Conical Be ening Mountin	am Width: 10 g (Stainless	0°, Receive Ga Steel), 10m	Switch, Built-in Impedance ain: 40dB, Receive Bandpass Shielded Cable, MIL-5015 Supply, TRS for Temperature	
BII7731-500kHz-TR-IM50Ω-5°-40dB-0.1MHz/5MHz- FH-3m-RG58-BNC/BNC/BS			fs, -3 Hang	3dB Conical I	Beam Width: 5°, Re 8 Cable, BNC Male C	eceive Gain: 40	dB, Receive	Bandpass Fil	ing Network as 50Ω load at ter: 0.1MHz to 5MHz. Free or Receive Signal, 9V Battery	

Question:

What if the mating connector of my DAQ module or recording device is NOT available from BII?

1. Buyer may order BII products with wire leads, and buyer assembles the mating connector to the cable end.

2. A connector adaptor might be assembled by BII by customization, and BII ships the adaptor to buyer as accessory of the device. Please contact BII for customizations.

3. Many adaptors for standard connectors are available in worldwide electronic suppliers such as BNC to SMA, BNC to SMC, XLR to TRS, etc. Check out your local suppliers.

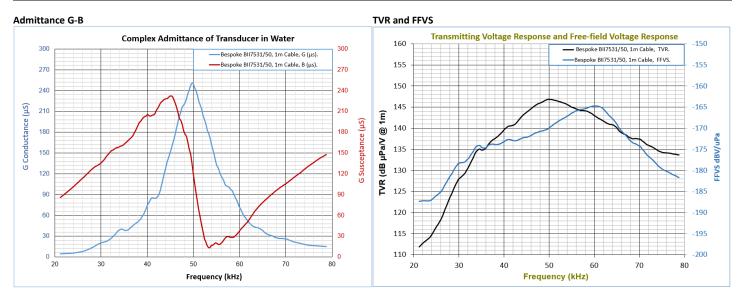
What are the advantage and disadvantage of a built-in T/R Switch Module comparing to a standalone T/R Switch Module?

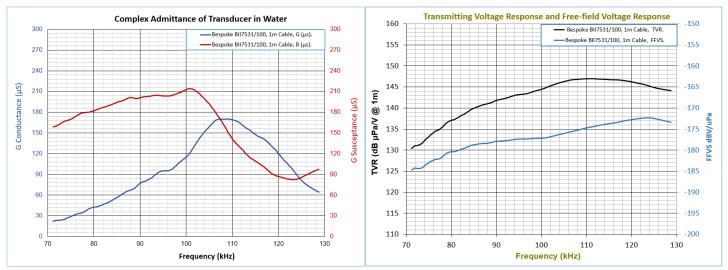
A built-in T/R Switch Module amplifies the received signal of the sensing element before the signal is polluted by EMI noises and system ground loop noises, and before it is attenuated by capacitance, inductance, and resistance of cables. But its price is a little bit higher than standalone T/R Switch Module.

Cable and Connector Information for High Power Signals (from Power Amplifier and to Transducers). Non-UL Uses.

	Wire and Cable Types	Ratings of Voltage, Current or Power, and Temperature.
	AWG18 Wires (WR)	3000 Vrms, 10 Arms.
	Two Conductor Shielded Cable (SC)	600 Vrms, 5 Arms.
Cable:	High Temperature Shielded Cable (HTSC199)	600 Vrms, 6 Arms, up to +199°C or 390 °F, Non-waterproof.
	Coax RG58 (50Ω) (RG58)	1400 Vrms, 4 Arms.
	Coax RG174/U (50Ω) (RG174)	1100 Vrms, 1.6 Arms.
	Coax RG178B/U (50Ω) (RG178).	750 Vrms, 0.86 Arms, up to +200°C or 390°F.
Connector:	Connector Type	Ratings of Voltage, Current or Power, and Temperature.
Connector:	1. Wire Leads (WL)	Used for Cables or Wires.

Benthowave Instrument Inc.

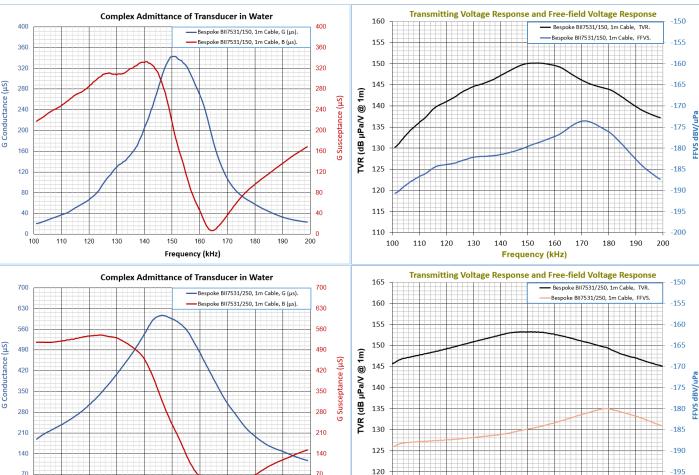

Underwater Sound Solutions www.benthowave.com 2. 50Ω BNC (BNC), Bayonet Lock. Panel Mount or In-line. 500Vrms, 316W. In-line BNC: Input uses Pin, output uses Socket. -65°C to 165°C. or -53.9°F to 329°F. Panel Mount BNC: Both Input and Output use BNC Jacks Used for Grounded Signal with Metal Enclosures or Coax Cables. 500Vrms, 13 A; Up to +125°C or 257°F, or, 3. MIL-5015 Type Connector (MIL), Thread Fastening. 900Vrms, 13 A; Up to +125°C or 257°F. Panel Mount or In-line. Input uses Pin, output uses Socket. Used for Metal Enclosures or Shielded Cables. 4. XLR Connector (XLR), Positive Latchlock 133Vrms, 15 A; -25°C to +75°C or -13°F to +167°F. Panel Mount or In-line. Input uses Pin, output uses Socket. Used for Metal Enclosures or Shielded Cables 5. Underwater Mateable Connector (UMC), Thread Fastening. 600Vrms, 10A. Waterproof, IP68. Panel Mount or In-line. Input uses Pin, output uses Socket. Used for Metal Enclosures or Shielded Cables Voltage Rating: 335 VRMS Continuous. (Max. Diameter Ф9.24 mm). 6. SMA (Plug, Male Pin) (SMA). Thread Fastening. In-line. Up to 155°C or 311°F Voltage Rating: 335 VRMS Continuous. (Max. Diameter Ф6.4 mm). 7. SMC (Plug, Female Socket) (SMC). Thread Fastening. In line. Up to 155°C or 311°F. 8. LEMO (Plug Male Pins) (LEMO). Push Pull Fastening. 900 V (AC), 1270 V (DC), 8A, (Max. Diameter Ф9.5 mm with 3 contacts). Temp (min / max) -55°C / +250°C. Panel Mount or In-line $|RMS Power * \frac{G}{G^2 + B^2}$ How to choose cable and connector for BII devices: Driving Voltage V_{drive} (V_{rms}) = BII lists G-B data at fs and/or the graph of G-B vs Frequency in online datasheet. **Case 1.** Deliver 1000 Wrms to 3 k Ω transducer at f_s. Note: G/(G²+B²)=3 k Ω is the resistive load of the transducer in load medium at f_s. Driving voltage to transducer V_{drive} = $\sqrt{1000 * 3000}$ = 1732 V_{rms}. The current to 3 k Ω transducer I drive = V_{drive}/R_L = 1732Vrms/3000 Ω = 0.57733 A_{rms}.


Therefore, AWG18 Wire and Wire leads are suitable.

Case 2. Deliver 500 Wrms to 300 Ω transducer at f_s. Note: G/(G²+B²)=300 Ω is the resistive load of the transducer in load medium at f_s. Driving voltage to transducer V_{drive} = $\sqrt{500 * 300}$ = 387.3 V_{rms}. The current to 300 Ω transducer I _{drive} = V_{drive}/R_L = 387.3 V_{rms}/300 Ω = 1.291 A_{rms}. Therefore, Two Conductor Shielded Cable and MIL-5015 Type Connector or Underwater Mateable Connector (UMC) are suitable.

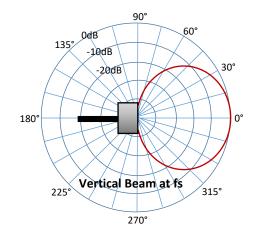
Case 3. Deliver 300 Wrms to 50 Ω transducer at $f_{s}.$

Driving voltage to transducer $V_{drive} = \sqrt{300 * 50} = 122.5 V_{rms}$. The current to 50 Ω transducer I _{drive} = $V_{drive}/R_L = 122.5 Vrms/50\Omega = 2.45 A_{rms}$. Therefore, 50 Ω RG58 Coax and BNC are suitable.

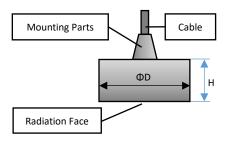


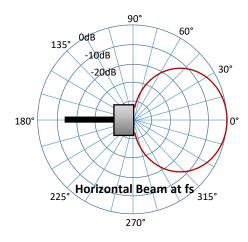
Benthowaye Instrument Inc. www.benthowave.com

Page **6** of **6**


-200

Underwater Sound Solutions




Directivity Pattern. illustration ONLY.

Frequency (kHz)

Physical Size (Dimensional Unit: mm)

 Frequency (kHz)