

Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com

Revised on 2025/01/12

Hydrophone and Ultrasonic Preamplifier

BII's low noise low power preamplifiers (amplifiers) have built-in filters and their gains are fixed or programmable with digital and analog control. These preamplifiers (amplifiers) are custom-fit for use in broadband (wideband) underwater SONAR, ultrasonic (Ultrasound, NDT, AE) system and material study.

Typical Applications

Hydrophone, SONAR, Underwater Communication, Navigation.	Ultrasonic (Ultrasound, AE, NDT) Testing, Material Characterization.
Seafloor-mapping, Sub-bottom/Sediment Profiler, Acoustic Image.	Low Noise Ultrasonic Preamplifier, Ultrasonic Instrumentation, Pulse Amplifier.
Streamer/Towed Array, Sonobuoy, Target Strength Testing.	Sonic Cavitation Noise.

BII1050 Series Low Noise Ultrasonic Preamplifier: 0.02 Hz to 10 MHz, 1 nV/VHz, 0.8 fA/VHz.

Specification

HPF : High Pass Filter; SE : Sin Preamplifier :	BII1051	BII1053	BII1052	BII1054	BII1055	BII1056	
Input Type:			ential input signals are			2.12000	
mput Type.	en: 1 nV/VHz	e _{n:} 1 nV/vHz	e _{n:} 10.0 nV/VHz	e _{n:} 10.0 nV/VHz	en: 1 nV/√Hz	en: 10.0 nV/√Hz	
Input Referred Noise:	i _n : 1.6 pA/VHz	i _n : 1.6 pA/VHz	i _n : 0.8 fA/VHz	i _n : 0.8 fA/VHz	i _n : 1.6 pA/VHz	i _n : 0.8 fA/vHz	
(f ≥ 1 kHz).			•	npedance of the transdu			
	1 ΜΩ	1 ΜΩ	200 ΜΩ	200 ΜΩ	1 ΜΩ	100 ΜΩ	
		ing to set up -3dB high		vith Capacitance C _h of a	piezoelectric sensor.	1	
Input Impedance:			<u> </u>	T transducer to achieve	•	e response or reduce	
• •		nging) of the transduc			0		
		0 0/		adaptor and a 50Ω BNC	Terminator.		
Maximum Input:		ım Output)/Gain, whic		•			
Gain of Pass Band:	40 dB	40 dB or 60 dB.	40 dB or 60 dB.	40 dB or 60 dB.	40 dB	40 dB	
	BPF	BPF	BPF	BPF	HPF	HPF	
	HPF: Second Order,	LPF: First Order.	II.		HPF: First Order.	•	
	Specify -3dB cut-off	frequencies when ord	dering. White noise leve	el is proportional to the	square root of bandwi	dth.	
		Filters of Preamps. Both oceanic ambient noises and the self-noises of electronic devices decrease when frequency increases. It is recommended to choose a built-in high pass filter to reject noises in low frequency range. For example, if you are interested in					
	the signals greater than 1 kHz, you may specify a high pass filter of a preamp with -3dB cut-off frequency 100 Hz to improve signal to						
Built-in Filter:	noise ratio of the signals of the interest.						
	Hoise ratio of the sig	gnais of the interest.					
ount-in Filter:			iezoelectric Hydrophor	es and Standalone Prea	amps.		
ount-in riiter:	System Filters Cons	isting of Standalone P	iezoelectric Hydrophor C_h). that is, $R_i = 1/(2\pi f_i)$		nmps.		
ount-III Filler:	System Filters Cons -3dB High Pass Freq	isting of Standalone P uency: f _{-3dBH} = 1/(2πR _i	C_h). that is, $R_i = 1/(2\pi f)$			lucer at 1 kHz (no	
ount-III Filter:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure	sisting of Standalone P quency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance	C_h). that is, $R_i = 1/(2\pi f_0)$ Preamp. C_h : Capacitance measurement such as	BadBH*Ch). te of piezoelectric hyd s NDT pulsing system). F	rophone/sensor/transc for example:	lucer at 1 kHz (no	
ount-III Filter:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1	sisting of Standalone P luency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear	C _h). that is, $R_i = 1/(2\pi f_{-1})$ reamp. C _h : Capacitance measurement such as mp $R_i 200M\Omega$ constitute	BadBH*Ch). te of piezoelectric hyd to NDT pulsing system). For thigh pass filter with -3	rophone/sensor/transc for example: dB frequency 0.08Hz.		
ount-III Filter:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (d	isting of Standalone P puency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer	C _h). that is, $R_i = 1/(2\pi f \cdot r_i)$ reamp. C_h : Capacitance measurement such as mp $R_i \cdot 200M\Omega$ constituted to $10.1 \cdot r_i$ of $10.1 \cdot r_i$ and pream	saden*Ch). The of piezoelectric hyd. The NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high	rophone/sensor/transo or example: dB frequency 0.08Hz. h pass filter with -3dB f	requency 63.662kH	
	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (isting of Standalone P puency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer	C _h). that is, $R_i = 1/(2\pi f_i)$ reamp. C_h : Capacitance measurement such as mp R_i 200M Ω constitute 0.1nF at f_s and preample 10nF at f_s at f_s and preample 10nF at f_s at f_s and f_s at f_s and f_s at f_s and f_s at f_s at f_s at f_s at f_s and f_s at f_s at f_s and f_s at f_s at f_s and f_s at f_s at f_s and f_s at f_s and f_s at $f_$	saden*Ch). The of piezoelectric hyde in NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high on R ₁ 50Ω constitute high	rophone/sensor/transo or example: dB frequency 0.08Hz. h pass filter with -3dB f pass filter with -3dB fre	requency 63.662kH equency 318.3kHz.	
-3dB Bandwidth Range:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz	isting of Standalone P juency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz ~ 2MHz	C _h). that is, $R_i = 1/(2\pi f_i)$ reamp. C_h : Capacitance measurement such as mp R_i 200M Ω constitute 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz	saden*Ch). te of piezoelectric hyd. to NDT pulsing system). Fe high pass filter with -3 p Ri 25kΩ constitute high O.02Hz ~ 1.5MHz	rophone/sensor/transo for example: dB frequency 0.08Hz. h pass filter with -3dB from the state of the pass filter with -3dB from the state of the st	requency 63.662kH. equency 318.3kHz. 0.02Hz ~ 500kHz	
-3dB Bandwidth Range: Settling Time, 0.01%:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS	isting of Standalone P puency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz ~ 2MHz 0.4 μS	C _h). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200M Ω constitute 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz 4 μS	gabh*Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p $R_1 25 k\Omega$ constitute high $R_1 50\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 50\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high R	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 µS	requency 63.662kH.equency 318.3kHz. 0.02Hz ~ 500kHz 4 µS	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS SE	isting of Standalone P quency: f _{-3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz ~ 2MHz 0.4 μS DF	C _h). that is, $R_i = 1/(2\pi f_i)$ reamp. C_h : Capacitance measurement such as mp R_i 200M Ω constitute 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz 4 μS	gabh*Ch). The of piezoelectric hydic in NDT pulsing system). For high pass filter with -3 p $R_1 25 k\Omega$ constitute high $\Omega R_1 50\Omega$ constit	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 µS	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS SE 50 Ω	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{\rm i})$ e or Impedance of P ment) or $f_{\rm s}$ (resonance OnF at 1kHz and prear or NDT/AE Transducer 10Hz ~ 2MHz 0.4 $\mu \rm S$ DF 10 Ω	C _h). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200M Ω constitute 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz 4 μS	gabh*Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p $R_1 25 k\Omega$ constitute high $R_1 50\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 50\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high $R_1 5k\Omega$ constitute high $R_2 5k\Omega$ constitute high R	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 µS	requency 63.662kH.equency 318.3kHz. 0.02Hz ~ 500kHz 4 µS	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{\rm i})$ e or Impedance of P ment) or $f_{\rm s}$ (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 $\mu \rm S$ DF 10 Ω \sim 4), in Vpp.	C _h). that is, $R_i = 1/(2\pi f_s^2)$ reamp. C_h : Capacitance measurement such as mp R_i 200M Ω constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μ S SE 10 Ω	gabh*Ch). The of piezoelectric hydic in NDT pulsing system). For high pass filter with -3 p $R_1 25 k\Omega$ constitute high $\Omega R_1 50\Omega$ constit	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 µS	requency 63.662kHz equency 318.3kHz. 0.02Hz ~ 500kHz 4 µS SE	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} :	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs - 1. 50Ω-Impedance I	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{i})$ e or Impedance of P ment) or f_{s} (resonance OnF at 1kHz and prear or NDT/AE Transducer OT NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 μS DF 10 Ω • 4), in Vpp. Watching Coaxial Cable	C _h). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constitute C_i 0.1nF at f_s and preample 10.02Hz \sim 1.5MHz 4 μ S SE 10 Ω	the of piezoelectric hydical parameters of piezoelectric hydical plants of piezoelectric hydical parameters of piezoelectric hydical para	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 µS	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} : Cable Driving Capability:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone ((3) A Hydrophone (0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs - 1. 50Ω-Impedance I 2. Non-Coaxial Shiel	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{\rm i})$ e or Impedance of P ment) or $f_{\rm s}$ (resonance OnF at 1kHz and prear or NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 $\mu \rm S$ DF 10 Ω . Φ 10 Φ	C _h). that is, $R_i = 1/(2\pi f_i)$ reamp. C_h : Capacitance measurement such as mp R_i 200MΩ constitute C_i 0.1nF at f_s and preample 10.02Hz \sim 1.5MHz 4 μ S SE 10 Ω	$_{\rm adah}^{*}$ Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm adah}^{*}$ 0.02Hz $_{\rm adah}^{*}$ 1.5MHz $_{\rm adah}^{*}$ 4 μS $_{\rm adah}^{*}$ DF $_{\rm adah}^{*}$ 10 Ω	rophone/sensor/transo for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω	
3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} : Cable Driving Capability: Power Supply Vs:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs - 1. 50Ω-Impedance I 2. Non-Coaxial Shiel +7.5 to +32 VDC	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{i})$ e or Impedance of P ment) or f_{s} (resonance OnF at 1kHz and prear or NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 μS DF 10 Ω 0.4 μS DF 10 Ω 0.4 μS Watching Coaxial Cablded Cable: Refer to Ω 1.7 to +32 VDC	C _h). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μ S SE 10 Ω 200m. The System: ≥ 300m. That of Cable-Drive Caparity 1.5 to +32 VDC	$_{\rm adeh}^{*}$ Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm adeh}^{*}$ Constitute hi	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} : Cable Driving Capability: Power Supply Vs:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs - 1. 50Ω-Impedance R 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{i})$ e or Impedance of P ment) or f_{s} (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 μ S DF 10 Ω 0.4), in Vpp. Watching Coaxial Cablided Cable: Refer to C 13.5 mA	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. Ch: Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz 4 μS SE 10 Ω e System: ≥ 300m. hart of Cable-Drive Caphers 1.5 mA	$_{\rm c}^{\rm color}$ choice of piezoelectric hydical NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}^{\rm color}$ Constitute high $_{\rm c}^{\rm color}$ 0.02Hz $_{\rm c}^{\sim}$ 1.5MHz $_{\rm c}^{\rm color}$ 4 μS $_{\rm c}^{\rm color}$ DF $_{\rm c}^{\rm color}$ 10 Ω $_{\rm c}^{\rm color}$ acity. +8.5 to +32 VDC 9.8 mA	rophone/sensor/transo for example: dB frequency 0.08Hz. h pass filter with -3dB fre pass filter with -3dB fre 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω	requency 63.662kH. equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} : Cable Driving Capability: Power Supply Vs:	System Filters Cons -3dB High Pass Freq R _i : Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs - 1. 50Ω-Impedance R 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA 1.2 V to 12.6 V Batter	isting of Standalone P quency: f _{.3dBH} = 1/(2πR _i e or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer 10Hz ~ 2MHz 0.4 μS DF 10 Ω - 4), in Vpp. Matching Coaxial Cabl Ided Cable: Refer to C 13.5 mA eries (AA, AAA, C, and	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. Ch: Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz ~ 1.5MHz 4 μS SE 10 Ω e System: ≥ 300m. hart of Cable-Drive Caphers 10.9 V. Coin Cell, Marin	$_{\rm c}^{\rm color}$ choice of piezoelectric hydical NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}^{\rm color}$ Constitute high $_{\rm c}^{\rm color}$ 0.02Hz $_{\rm c}^{\sim}$ 1.5MHz $_{\rm c}^{\rm color}$ 4 μS $_{\rm c}^{\rm color}$ DF $_{\rm c}^{\rm color}$ 10 Ω $_{\rm c}^{\rm color}$ acity. +8.5 to +32 VDC 9.8 mA	rophone/sensor/transc for example: dB frequency 0.08Hz. h pass filter with -3dB fre	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output V _{omax} : Cable Driving Capability: Power Supply Vs: Quiescent Current:	System Filters Cons -3dB High Pass Freq Ri: Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs- 1. 50Ω-Impedance I 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA 1.2 V to 12.6 V Batte Fixed DC Linear Pow	isting of Standalone P puency: $f_{.3dBH} = 1/(2\pi R_{i})$ e or Impedance of P ment) or f_{s} (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz $^{\sim}$ 2MHz 0.4 μ S DF 10 Ω Matching Coaxial Cablided Cable: Refer to C 13.5 mA eries (AA, AAA, C, and ver Supplies, Not Inclu	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μS SE 10 Ω e System: \geq 300m. hart of Cable-Drive Caphara MA D, 9V, Coin Cell, Marin ided.	$_{\rm adeh}^{*}$ C _h). The of piezoelectric hydical NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ O.02Hz $_{\rm c}$ 1.5MHz $_{\rm c}$ 4 μS $_{\rm c}$ DF $_{\rm c}$ 10 Ω $_{\rm c}$ $_{\rm c}$ Constitute high $_{\rm c}$ Constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ Constitute	rophone/sensor/transcror example: dB frequency 0.08Hz. h pass filter with -3dB frequency 0.1kHz ~ 8MHz 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω +7.5 to +32 VDC 7.7 mA	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs: Quiescent Current:	System Filters Cons -3dB High Pass Freq Ri: Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs- 1. 50Ω-Impedance I 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA 1.2 V to 12.6 V Batte Fixed DC Linear Pow DO NOT use variable	isting of Standalone P quency: f _{.3dBH} = 1/(2πRight) or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer OnF at 1kHz and prear or NDT/AE Transducer OnF at 1kHz On4 μS DF 10 Ω -4), in Vpp. Matching Coaxial Cabled Cable: Refer to C 13.5 mA eries (AA, AAA, C, and over Supplies, Not Include power supplies who	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μS SE 10 Ω e System: \geq 300m. hart of Cable-Drive Capher 4.55 to +32 VDC 8.3 mA D, 9V, Coin Cell, Marin ided.	$_{\rm adeh}^{*}$ Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ O.02Hz $_{\rm c}$ 1.5MHz $_{\rm c}$ 4 μS $_{\rm c}$ DF $_{\rm c}$ 10 Ω $_{\rm c}$ $_{\rm c}$ Acity. $_{\rm c}$ +8.5 to +32 VDC 9.8 mA e and Automobile).	rophone/sensor/transcror example: dB frequency 0.08Hz. h pass filter with -3dB frequency 0.1kHz ~ 8MHz 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω +7.5 to +32 VDC 7.7 mA e above rated voltage.	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs: Quiescent Current: Suggested DC Supply Vs:	System Filters Cons -3dB High Pass Freq Ri: Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs- 1. 50Ω-Impedance I 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA 1.2 V to 12.6 V Batte Fixed DC Linear Pow DO NOT use variabl DO NOT use switchi	isting of Standalone P quency: f _{.3dBH} = 1/(2πRight) or Impedance of P ment) or f _s (resonance OnF at 1kHz and prear or NDT/AE Transducer OnF at 1kHz and prear or NDT/AE Transducer OnF at 1kHz On4 μS OF OnF OnF OnF OnF OnF OnF OnF OnF OnF	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μS SE 10 Ω e System: \geq 300m. hart of Cable-Drive Capher 4.55 to +32 VDC 8.3 mA D, 9V, Coin Cell, Marin ided.	$_{\rm adeh}^{*}$ C _h). The of piezoelectric hydical NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ O.02Hz $_{\rm c}$ 1.5MHz $_{\rm c}$ 4 μS $_{\rm c}$ DF $_{\rm c}$ 10 Ω $_{\rm c}$ $_{\rm c}$ Constitute high $_{\rm c}$ Constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ Constitute	rophone/sensor/transcror example: dB frequency 0.08Hz. h pass filter with -3dB frequency 0.1kHz ~ 8MHz 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω +7.5 to +32 VDC 7.7 mA e above rated voltage.	requency 63.662kH. equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	
-3dB Bandwidth Range: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs: Quiescent Current: Suggested DC Supply Vs: Operating Temperature: Storage Temperature:	System Filters Cons -3dB High Pass Freq Ri: Input Resistance resonance measure (1) A Hydrophone 1 (2) A Hydrophone (c) (3) A Hydrophone (c) 0.1kHz ~ 10MHz 0.4 μS SE 50 Ω (Supply Voltage Vs- 1. 50Ω-Impedance I 2. Non-Coaxial Shiel +7.5 to +32 VDC 11.0 mA 1.2 V to 12.6 V Batte Fixed DC Linear Pow DO NOT use variable	isting of Standalone P quency: f _{.3dBH} = 1/(2πRight) or Impedance of P ment) or f _{.5} (resonance OnF at 1kHz and prear or NDT/AE Transducer or NDT/AE Transducer 10Hz ~ 2MHz 0.4 μS DF 10 Ω - 4), in Vpp. Matching Coaxial Cable Ided Cable: Refer to C +7.5 to +32 VDC 13.5 mA eries (AA, AAA, C, and over Supplies, Not Include power supplies who ing mode DC power supplies who in the provided in th	Ch). that is, $R_i = 1/(2\pi f_i)$ freamp. C_h : Capacitance measurement such as mp R_i 200MΩ constituted 0.1nF at f_s and preample 10.02Hz $^{\sim}$ 1.5MHz 4 μS SE 10 Ω e System: \geq 300m. hart of Cable-Drive Capher 4.55 to +32 VDC 8.3 mA D, 9V, Coin Cell, Marin ided.	$_{\rm adeh}^{*}$ Ch). The of piezoelectric hydic NDT pulsing system). For high pass filter with -3 p R ₁ 25kΩ constitute high $_{\rm c}$ R ₁ 50Ω constitute high $_{\rm c}$ O.02Hz $_{\rm c}$ 1.5MHz $_{\rm c}$ 4 μS $_{\rm c}$ DF $_{\rm c}$ 10 Ω $_{\rm c}$ $_{\rm c}$ Acity. $_{\rm c}$ +8.5 to +32 VDC 9.8 mA e and Automobile).	rophone/sensor/transcror example: dB frequency 0.08Hz. h pass filter with -3dB frequency 0.1kHz ~ 8MHz 0.1kHz ~ 8MHz 0.4 μS SE 50 Ω +7.5 to +32 VDC 7.7 mA e above rated voltage.	requency 63.662kH equency 318.3kHz. 0.02Hz ~ 500kHz 4 μS SE 10 Ω +9 to +32 VDC	

Benthowave Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU. benthowave.com

Revised on 2025/01/12

Available Packages:

Metal or Plastic Housing with Four Mounting Holes.

- 1. BNC: "Bayonet Neill–Concelman", miniature quick connect/disconnect radio/audio frequency connector used for coaxial cable. Fastening Type: Bayonet Lock.
- 2. XLR: Employed for balanced audio interconnections, 3 to 7 contacts. Fastening Type: Latch Lock. NOT supported by BII metal housing because of its large size.
- 3. 3.5mm TRS stand for Tip, Ring, and Sleeve, miniature, quick connect/disconnect audio frequency connector used for shielded cable. Fastening Type: None.
- 4. DIN: Electrical cylindrical connectors, 3 to 14 contacts, Φ20mm diameter, used for audio, RF, digital, and DC or AC power signals. Fastening Type: Threaded.
- 5. DC Power Connector: Supply DC voltage and current to devices, miniature, quick connect/disconnect, used for shielded cable. Fastening Type: None.

Packages:	Signal Type	Small Metal Housing with Four Mounting Holes	Large Metal or Plastic Housing with Four Mounting Holes
Innut Connectors	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)
Input Connector:	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 3 Sockets (XLR)
Output	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)
Connector:	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 3 Sockets (XLR)
Davies Crossler	DC Power Conn	nector Jack on Housing.	
Power Supply:	Options of Pow	ver Supply Cable: <u>DCBP24</u> , <u>DCBS9V</u> , <u>DCBS18V</u> .	
Size LxWxH (mm):	77x50.6x33 (No	BNC Jacks) or 77x50.6x43 (with BNC Jacks)	109.45x83.4x65 (No BNC Jacks) or 109.45x83.4x67 (with BNC Jacks)
Weight:	115 grams ± 10	%	150 grams ± 10%

Standard Preamps, Plastic or Metal Housing. BII keeps standard parts in stock.

Part Number	-Gain	-R _i Input Impedance, Refer to R _i C _h Filter.	-Input/Output Connector	-DC Supply Type
BII1052	40dB	200 M Ω (Differential Input). 20 M Ω (Differential Input).	XLR/BNC Jacks.	DCBP24, DCBS18V.
BII1054	4005	2 MΩ (Differential Input).	XLR/XLR Jacks.	<u>BCBI 24, BCB310V</u> .
Example:		Description:		
BII1052-40dB-20MΩ-X	(LR/BNC-DCBP24:	BII1054, Preamp, 40dB Gain, Input Impedal Supply Cable: DCBP24.	nce: 20M Ω , Input Connector: XLR Jack, O	utput Connector: BNC Jack. DC
BII1054-40dB-200MΩ-	-XLR/XLR-DCBS18:	BII1054, Preamp, 40dB Gain, Input Impeda DCBP24.	nce: $200 M\Omega$, Input and Output Connecto	rs: XLR Jacks. DC Supply Cable:

How to Order Bespoke Preamplifiers with Plastic or Metal Housing. Non-stock.

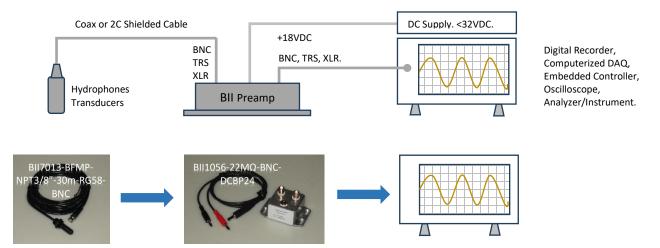
Part Number	- <u>Gain</u>	-Ri Input Impedance.	-HPF or HPF/LPF	-Input/Output Connector	-Accessory Cable Length	-Type	
BII1051, BII1052, BII1053, BII1054, BII1055, BII1056.	40dB, 60dB.	Refer to RiCh Filter.	-3dB High Pass or Bandpass Frequency, in Hz, kHz, MHz.	BNC: BNC Jack. TRS: 3.5mm TRS Jack. XLR: Plug with 3 Jacks.	Blank or Default: No Accessor A1 to A7. DCBP24, DCBS18V		
High Pass Filter of t	: he preamp is t	the combination of R _i C _h H	gh Pass Filter and HPF High Pass Filter. R _i C _h High Pass Filter is determined by C _h .				
To avoid adverse ef	fects of parasit	cic components of a resist	or, input impedance ≤ 5 kΩ is red	commended for 5 MHz to 10 M	1Hz applications.		
Example:			Description:				
BII1051-40dB-50Ω-	0.1MHz/10MH	z-BNC/BNC-DCBP24:	BII1051, Preamp, 40dB Gain, I and Output: BNC Jacks. DC Sup		and Pass Filter: 0.1MHz to 10N	⁄IHz; Input	
BII1051-40dB-25kΩ	-1kHz/1MHz-X	LR/BNC-DCBP24:	BII1051, Preamp, 40dB Gain, Input Impedance: 25kΩ, -3dB Band Pass Filter: 1kHz to Input/Output: XLR/BNC Jack. DC Supply Cable: DCBP24.				
BII1052-60dB-1MΩ	-1Hz/200kHz-T	RS/BNC-30m-A4-	BII1052, Preamp, 60dB Gain	, Input Impedance: 1MΩ, -3	dBB Band Pass Filter: 1Hz to	200kHz;	
DCBS18V:			Input/Output: TRS/BNC Jack. Accessory: 30m A4. DC Supply Cable: DCBS18V.				
BII1054-60dB-1MΩ	-1Hz/200kHz-X	LR/XLR-30m-A4-	BII1054, Preamp, 60dB Gain	, Input Impedance: 1MΩ, -3	BdB Band Pass Filter: 1Hz to	200kHz;	
DCBS18V:			Input/Output: XLR Jack, Access	sory: 30m A4. DC Supply Cable:	DCBS18V.		

Signals and Wiring of Panel-Mount Connectors

Input or Output Signals			Power Supply
Single Ended (SE)	Differential/Balanced (DF):		Single DC Supply
BNC Jack	3.5mm TRS Jack	XLR (Balanced Audio)	Power Jack
Center: Signal Shield: Common	Tip: Signal +, Positive or Hot. Ring: Signal -, Negative or Cold. Sleeve: Common/Ground.	Pin 2, Positive/Hot. Pin 3, Negative/Cold. Pin 1, Shield/Ground.	Center Contact: +VDC. Shell: Common.
Metal Case is for shielding	and grounding.		

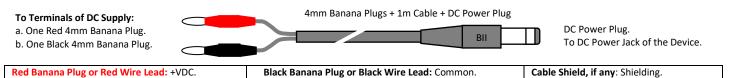
Signals and Wiring of Accessory Cables

XLR (Balanced Audio)	Single DC Supply
YLR (Balanced Audio)	5 6
ALI (Balanceu Addio)	Power Plug
Pin 2, Positive/Hot.	Red Banana Plug: +VDC.
Pin 3, Negative/Cold.	Black Banana Plug: Common.
Pin 1, Shield/Ground.	Cable Shield, if any: Shielding.
	Pin 3, Negative/Cold.

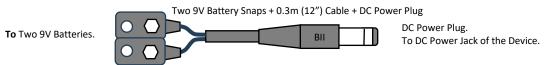

Benthowave Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com


Revised on 2025/01/12

System Wirings of Standalone Preamp.



Accessories:

Part Number: DCBP24. One 1m DC supply cable with Red and Black Banana Plugs, and DC Power Plug.

Part Number: DCBS18V. 0.3m (12") DC supply cable with two 9V Battery Snaps which supplies +18VDC to amplifiers and one DC Power Plug.

A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male. Default: 0.6m.

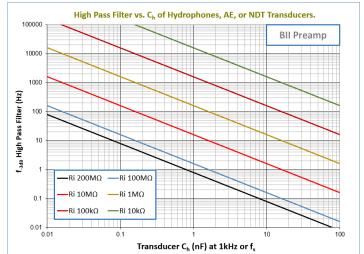
A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. Default: 1.828m.

A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. Default: 0.9m.

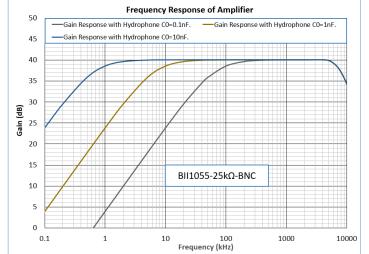
A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male Pins. Default: 0.9m.

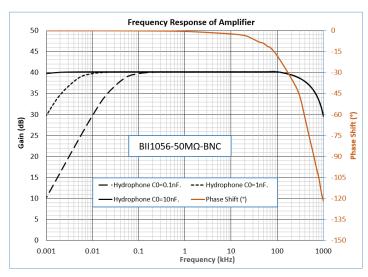
A7 Receiving Signal Cable. Part Number: XLR-P-WL-1m, Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Default: 1m.

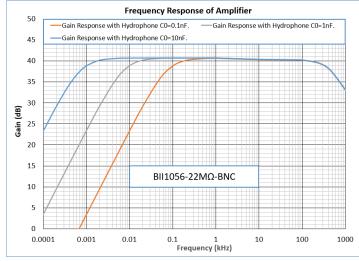
BIII

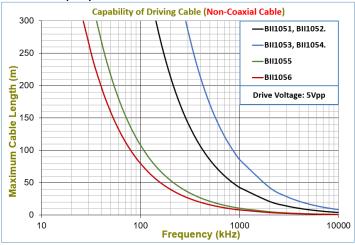

Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

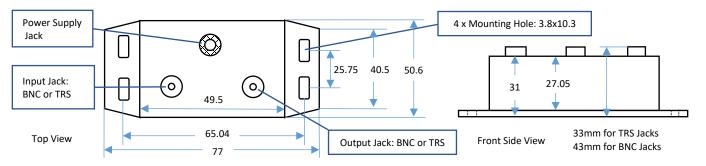

henthowave com


Revised on 2025/01/12

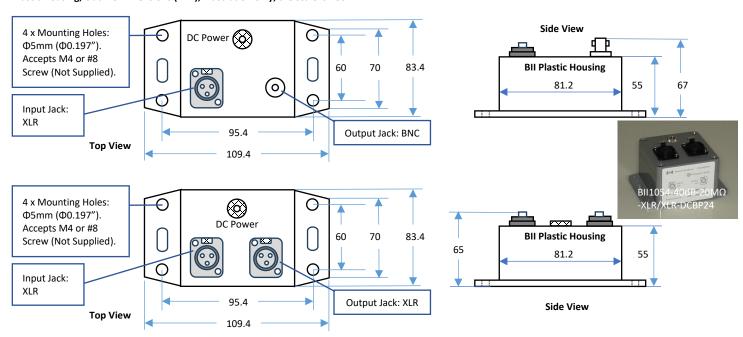

High Pass Filter vs. Ch of Hydrophone, AE, or NDT Transducer.


Frequency Response of Bespoke Preamps.

Cable-Drive Capacity

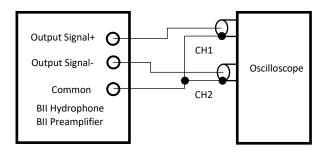

Benthowave Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

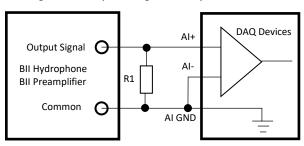

benthowave.com

Revised on 2025/01/12

Metal Housing, Outline Dimensions (mm), Illustration only, the scale is not 1:1.

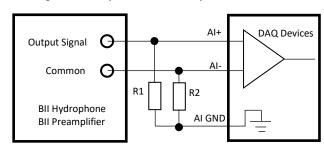


Plastic Housing, Outline Dimensions (mm), Illustration only, the scale is not 1:1.



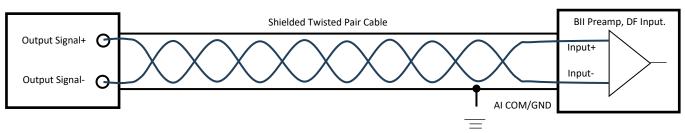
Preamplifier Wirings to DAQ (Data Acquisition): DAQ: Data Acquisition Hardware; AI: Analog Input; CH: Channel; GND: Ground. R1 and R2 resistors are NOT necessary for most applications. If DAQ saturation occurs, use R1 = R2 = $10k\Omega$ to $1M\Omega$ resistors.

BII's Differential Output to BNC Input of an Oscilloscope

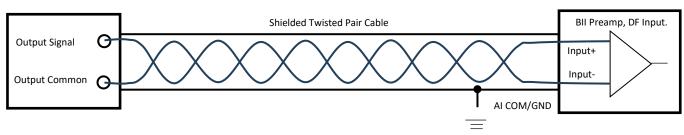

BII's Single-Ended Output to Single-Ended Input of a DAQ

BII's Differential Output to Differential Input of a DAQ

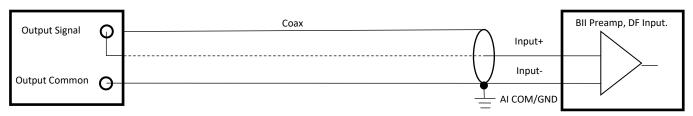
BII's Single-Ended Output to Differential Input of a DAQ


Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.


benthowave.com

Revised on 2025/01/12


BII's Differential Sound Receiver to Differential Input of a BII Preamp (Signal Conditioner)

BII's Single-ended Receiver to Differential Input of a BII Preamp

BII's Single-ended Receiver to Differential Input of a BII Preamp

Ouestions

What if the connector of my transducer/sensor is SMA or SMC Connector? SMA (or SMC) to BNC (Male) adaptors are available from many electronic distributors. BII may sell the adaptor as an accessory of the device upon request. By default, BII does NOT supply the adaptor as accessories.

How do I wire 50Ω transducer/sensor to preamplifiers in high frequency applications? Many BII preamplifiers have non- 50Ω input resistances which does NOT match 50Ω in high frequency applications. Therefore, one T type BNC adaptor and one 50Ω BNC terminal are necessary between 50Ω transducer/sensor and the preamplifier to change the impedance of the preamp to be 50Ω . BII may ship T type BNC adaptor and one 50Ω BNC terminal as accessories of the device. Please specify this request when ordering. By default, BII does NOT supply these two parts as accessories. By the way it is NOT necessary to do 50Ω matching in low frequency range applications in which electromagnetic wave lengths are much greater than the cable length.

How do I wire BII preamplifiers to audio connectors XLR Plug with 3 Female Sockets (Differential Signal) of my recording devices? BII Preamplifiers have panel mount TRS Jacks as output connectors. Please order accessory A4 with preamplifiers. By default, BII does NOT supply the cable assembly as accessories.

My acoustic sensors generate differential signals in MHz range, are TRS connectors of BII preamps suitable for my applications? Our test shows the TRS connectors (Plug and Jack) of BII preamps can be used up to 20 MHz. Test Conditions: TRS Jack with 0.2m cable and TRS plug with 1m cable. Oscilloscope: $1M\Omega | 30pF$, Signal Source: DDS Signal Generator.

Can 3.5mm (1/8") TRS be configured for single-ended signal of a hydrophone/transducer which does not have built-in preamplifier? Yes, the preamp with differential-input TRS can accept single-ended signals from hydrophones/transducers whose TRS wiring should be like followings: TRS Tip: Signal. TRS Ring and Sleeve: Both terminals are soldered together for Signal Common and Shielding. Common and shielding should be "one-point" contact.

Can BII explain why the capacitance of my hydrophone/transducer affect high pass filtering? (1). Hydrophone/transducer is high impedance devices in low frequency range. Its simplified complex impedance = $j/(2\pi fC_h)$, C_h is the capacitance of hydrophone/transducer, f is frequency in Hz. This impedance is in series with preamp R_i and can reach several $M\Omega$ to hundreds $M\Omega$ depending on C_h and f. (2). Most high-performance operational amplifiers (IC chips) can use input resistors R_i up to 1 to 200 $M\Omega$ to avoid bumping into saturation issue.

My recorder (or signal processing device) is about 100m away from the hydrophone (or AE Sensor), which type of preamplifiers should I choose? Choose differential-output preamps to drive the 100m cable and ensure that your data acquisition device can accept differential signals.

Can the hydrophone with differential outputs be wired to single-ended inputs of a DAQ device (Data Acquisition Equipment) such as an Oscilloscope? Yes, output+ and Common of a BII hydrophone can be used a single-ended signal, or Output- and Common of the hydrophone can be used a single-ended signal. But, neither output+ nor output – of the hydrophone can be wired to common which is going to destroy the hydrophone by short circuit.

Driving 100 Ω Balanced Twisted Pair Cable/Wires and 50 or 75 Ω Coax.

- (1) Impedance of most Balanced Twisted Pair Cable/Wire is from 100Ω to 150Ω .
 - BII preamp has 100Ω output impedance or bespoke impedance to match the impedance of Balanced Twisted Pair Cable/Wires.
- (2) Impedance of most Coax is 50Ω or 75Ω .
 - BII preamp has 50Ω output impedance or bespoke 75Ω impedance to match the impedance of coaxes.