

Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com

Revised on 2025/3/4

Hydrophone and Ultrasonic Preamplifier

BII's low power low noise preamplifiers (amplifiers) have built-in filters and their gains are fixed or programmable with digital and analog control. These preamplifiers (amplifiers) are custom-fit for use in broadband (wideband) underwater SONAR, ultrasonic (Ultrasound, NDT, AE) system and material study.

Typical Applications

Hydrophone, SONAR, Underwater Communication.	Ultrasonic (Ultrasound, AE, NDT) Testing, Material Characterization.
Streamer/Towed Array, Sonobuoy, Infrasonic and noise measurement.	Portable Battery-powered Acoustic System, Bioacoustics, Sound Recording.

BII1010 Series and BII1060 Series Low Power Low Noise Preamplifier: Hand-held, Portable, Battery-operated Systems.

Low Power Low Noise Preamplifiers for acoustical instruments: Hydrophones, Air Transducers, Acoustic Emission Sensors, and Ultrasonic Transducers (Non-destructive Testing). Uses in underwater sound (oceanography and hydrography), sonic and ultrasonic engineering, electroacoustics, communication, bioacoustics, exploration seismology and seismic wave, physical acoustics, acoustical Imaging, and material study.

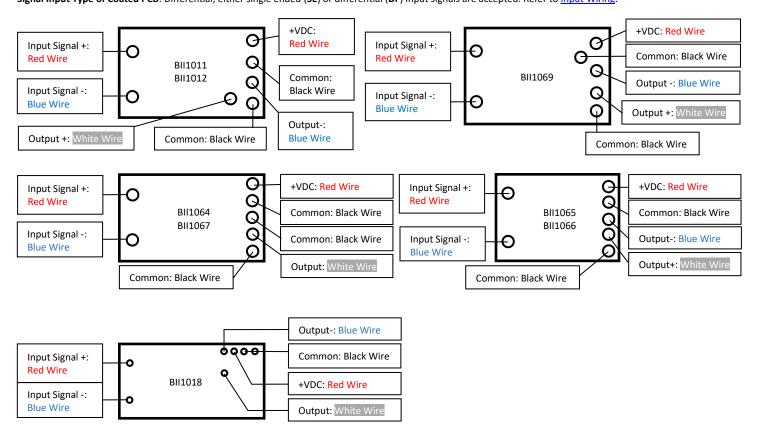
Specification

Low Power Preamp:	BII1011	BII1012	BII1018	BII1064	BII1066	BII1067	BII1069
Input Type:	Differential, either single ended (SE) or differential (DF) input signals are accepted.					•	
	14 nV/VHz.	5 nV/VHz.	7 nV/√Hz.	12 nV/VHz	12 nV/VHz.	21 nV/VHz.	7 nV/√Hz.
Input Referred Noise:	0.5 fA/VHz.	85 fA/√Hz.	0.4 fA/√Hz.	170 fA/√Hz	170 fA/VHz.	160 fA/√Hz.	170 fA/√Hz.
e _n , i _n . RTI, f≥1 kHz.	Roughly, electroni	ic noise density at i	nput, RTI, $V_n^2 = e_n^2 +$	[in * impedance of	f the transducer (or	hydrophone)] ² .	
	200 ΜΩ	20 ΜΩ	200 ΜΩ	44 ΜΩ	44 ΜΩ	20 ΜΩ	20 ΜΩ
Input Impedance R _i :	Bespoke R _i : specif	y when ordering to	set up -3dB high pa	ss filter frequency v	with Capacitance C _h	of a piezoelectric	sensor.
Maximum Input:	2.4 Vpp or (Maxim	num Output V _{omax})/	Gain, whichever is le	ess.			
	HPF	HPF	HPF	BPF	BPF	BPF	HPF
	HPF: First Order.			HPF: Second Ord	er; LPF: First Order.		HPF: 2 nd Order
	Customized high p	oass filter and/or Lo	w pass filter, specify	y -3dB cut-off frequ	encies when orderi	ng.	
	White noise level	is proportional to t	ne square root of ba	ındwidth.			
	Filters of Preamps	s. Both oceanic amb	ient noises and the	self-noises of elect	ronic devices decre	ase when frequent	cy increases.
	It is recommende	d to choose a built-	in high pass filter to	reject noises in lo	w frequency range.	For example, if yo	u are interested
	the signals greate	r than 1 kHz, you m	ay specify a high pas	ss filter of a preamp	with -3dB cut-off f	requency 100 Hz to	o improve signal t
	noise ratio of the	signals of the intere	est.				
Built-in Filter:	System Filters Cor	nsisting of Standalo	ne Piezoelectric Hyd	drophones and Star	ndalone Preamps.		
	_		$2\pi R_i C_h$). that is, $R_i =$,			
	R _i : Input Resistance	e or Impedance of	Preamp. C _h : Capacit	ance of piezoelectr	ic hydrophone/sen:	sor/transducer at 1	. kHz (non-
	resonance measu	rement) or fs (reson	ance measurement	such as NDT pulsin	ig system). For exan	nple:	
			$amp R_i 200M\Omega constant$		the state of the s	•	
	(2) hydrophone 10nF at 1kHz and preamp R ₁ 100MΩ constitute high pass filter with -3dB frequency 0.159Hz.						
	(2) Hydrophone 10	one at ikmz and pre	${\sf amp}\ {\sf R}_{\sf i}\ {\sf 100M}\Omega$ cons	stitute high pass filt	er with -3dB freque	ency 0.159Hz.	
			eamp R_i 100MΩ constants R_i 20MΩ $^{\circ}$ cons		the state of the s	•	
	(3) hydrophone 10 (4) hydrophone 10	OnF at 1kHz and pre OnF at 1kHz and pre	$amp~R_i~20M\Omega~constant$	stitute high pass filt stitute high pass filt	er with -3dB freque er with -3dB freque	ency 0.795Hz. ency 7.950Hz.	
	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre	$\frac{1}{2}$ amp R_i 20MΩ constant R_i 2MΩ constant R_i 200kΩ cons	stitute high pass filt stitute high pass filt stitute high pass filt	er with -3dB freque er with -3dB freque er with -3dB freque	ency 0.795Hz. ency 7.950Hz. ncy 79.50Hz.	
Gain of Pass Band:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB.	$\begin{array}{ccc} \text{ramp } R_i \ 20\text{M}\Omega & \text{cons} \\ \text{ramp } R_i \ 2\text{M}\Omega & \text{cons} \\ \text{ramp } R_i \ 200\text{k}\Omega & \text{cons} \\ \hline 40\text{dB} & \end{array}$	stitute high pass filt stitute high pass filt stitute high pass filt 40dB	er with -3dB freque er with -3dB freque	ency 0.795Hz. ency 7.950Hz.	40dB
Gain of Pass Band:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB.	$\begin{array}{lll} \text{amp } R_i \ 20M\Omega & \text{cons} \\ \text{amp } R_i \ 2M\Omega & \text{cons} \\ \text{amp } R_i \ 200k\Omega & \text{cons} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	stitute high pass filt stitute high pass filt ititute high pass filt 40dB DNLY one gain.	er with -3dB freque er with -3dB freque er with -3dB freque	ency 0.795Hz. ency 7.950Hz. ncy 79.50Hz.	40dB
	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB.	$\begin{array}{ccc} \text{ramp } R_i \ 20\text{M}\Omega & \text{cons} \\ \text{ramp } R_i \ 2\text{M}\Omega & \text{cons} \\ \text{ramp } R_i \ 200\text{k}\Omega & \text{cons} \\ \hline 40\text{dB} & \end{array}$	stitute high pass filt stitute high pass filt stitute high pass filt 40dB	er with -3dB freque er with -3dB freque er with -3dB freque	ency 0.795Hz. ency 7.950Hz. ncy 79.50Hz.	40dB 1Hz ~ 500kHz
-3dB Bandwidth:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a	OnF at 1kHz and preconf at 1kHz and preconF at 1kHz and preconF at 1kHz and preconf 40dB.	$\begin{array}{lll} \text{amp } R_i \ 20M\Omega & \text{cons} \\ \text{amp } R_i \ 2M\Omega & \text{cons} \\ \text{amp } R_i \ 200k\Omega & \text{cons} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	stitute high pass filt stitute high pass filt ititute high pass filt 40dB DNLY one gain.	er with -3dB freque er with -3dB freque er with -3dB freque 40dB	ency 0.795Hz. ency 7.950Hz. ncy 79.50Hz. 40dB	
-3dB Bandwidth: Settling Time, 0.01%: Output Type:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB. nd set at BII factory 1Hz ~ 350kHz	$\begin{array}{lll} \text{ramp R}_{\text{i}} 20M\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 2M\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 200k\Omega & \text{cons} \\ \hline & 40dB \\ \text{. Each preamp has G} \\ \hline & 0.1\text{Hz} ^{\sim} 800\text{kHz} \end{array}$	stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz	er with -3dB freque er with -3dB freque er with -3dB freque 40dB	ency 0.795Hz. ency 7.950Hz. ncy 79.50Hz. 40dB 1Hz ~ 350kHz	1Hz ~ 500kHz
-3dB Bandwidth: Settling Time, 0.01%: Output Type:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB. nd set at BII factory 1Hz ~ 350kHz 6 µS	$\begin{array}{lll} \text{ramp R}_{\text{i}} 20M\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 2M\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 200k\Omega & \text{cons} \\ \hline 40dB \\ \text{s. Each preamp has 0} \\ \hline 0.1\text{Hz} ^{\sim} 800\text{kHz} \\ \hline 4 \mu\text{S} \end{array}$	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 µS	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS	ency 0.795Hz. ency 7.950Hz. ency 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS	1Hz ~ 500kHz 6 μS
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF	OnF at 1kHz and pre OnF at 1kHz and pre OnF at 1kHz and pre 40dB. Ind set at BII factory 1Hz ~ 350kHz DF	$\begin{array}{c} \text{ramp R}_{\text{i}} 20 \text{M}\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 2 \text{M}\Omega & \text{cons} \\ \text{ramp R}_{\text{i}} 200 \text{k}\Omega & \text{cons} \\ \text{40dB} \\ \text{Each preamp has 0} \\ \text{0.1Hz} ^{\sim} 800 \text{kHz} \\ \text{4 } \mu\text{S} \\ \text{DF} \end{array}$	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 µS SE	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF	ency 0.795Hz. ency 7.950Hz. ency 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE	1Hz ~ 500kHz 6 μS DF
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp.	On F at 1kHz and pre On F at 1kHz and pre On F at 1kHz and pre 40dB. Ind set at BII factory 1Hz ~ 350kHz 6 μS DF	ramp R_i 20MΩ constant R_i 2MΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kHz R_i	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz \sim 640kHz 6 μ S DF 20 Ω	ency 0.795Hz. ency 7.950Hz. ency 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω	1Hz ~ 500kHz 6 μS DF 100 Ω
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp.	On F at 1kHz and precon F at	ramp R_i 20MΩ constant R_i 2MΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kΩ constant R_i 200kHz R_i	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz \sim 640kHz 6 μ S DF 20 Ω	ency 0.795Hz. ency 7.950Hz. ency 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω	1Hz ~ 500kHz 6 μS DF 100 Ω
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs (VDC):	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0	OnF at 1kHz and preconf a	ramp R_i 20MΩ constamp R_i 2MΩ constamp R_i 200kΩ constamp R_i 200kΩ constamp R_i 200kΩ constamp R_i 200kHz = 4 μS DF 20 Ω Vs - 4.0, Vpp.	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 µS SE 10 Ω Vs - 5.0, Vpp.	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 μS DF 20 Ω Vs - 5.0, Vpp.	ncy 0.795Hz. ncy 7.950Hz. ncy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp.	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC):	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA	OnF at 1kHz and preconf a	ramp R _i 20M Ω constant R _i 2M Ω constant R _i 200k Ω constant R _i 200kHz 4 μS DF 20 Ω Vs - 4.0, Vpp. Vs. +9 to +32 6.8 mA	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz \sim 640kHz 6 μ S DF 20 Ω Vs - 5.0, Vpp.	ncy 0.795Hz. ncy 7.950Hz. ncy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32.	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs (VDC): Quiescent Current IQ:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba	OnF at 1kHz and preconf a	ramp R _i 20M Ω constamp R _i 2M Ω constamp R _i 200k Ω constant Parameter Ω and Ω constant Parameter Ω cons	stitute high pass filt stitute high pass filt stitute high pass filt 40dB DNLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz \sim 640kHz 6 μ S DF 20 Ω Vs - 5.0, Vpp.	ncy 0.795Hz. ncy 7.950Hz. ncy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32.	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs (VDC): Quiescent Current Iq:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Po	OnF at 1kHz and preconf a	ramp R _i 20M Ω constamp R _i 2M Ω constamp R _i 200k Ω constant Parameter Ω and Ω constant Parameter Ω cons	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
Gettling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply Vs (VDC): Quiescent Current Iq:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial	OnF at 1kHz and preconf a	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp. Vs	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
Gadb Bandwidth: Settling Time, 0.01%: Dutput Type: Dutput Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial	on F at 1kHz and precon F at	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp. Vs	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
3dB Bandwidth: Settling Time, 0.01%: Dutput Type: Dutput Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switce	OnF at 1kHz and precent a	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp. Vs	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp. +7.5 to +32
Gadb Bandwidth: Settling Time, 0.01%: Dutput Type: Dutput Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply: Operating Temperature: Storage Temperature:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 -40 to 70 °C or -40	on F at 1kHz and precon F at	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp. Vs - 4.0, Vpp	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply: Operating Temperature: Storage Temperature:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 Metal Housing with	on F at 1kHz and precent	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 20kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp.	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply: Operating Temperature: Storage Temperature: Package	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 Metal Housing wit 1. BNC Jack (BNC)	OnF at 1kHz and precent a	ramp R _i 20MΩ constamp R _i 2MΩ constamp R _i 20kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kΩ constamp R _i 200kHz 4 μ S DF 20 Ω Vs - 4.0, Vpp.	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply: Operating Temperature: Storage Temperature: Package	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 Metal Housing wit 1. BNC Jack (BNC) 2. 3.5 mm TRS Jac	OnF at 1kHz and precent a	ramp R ₁ 20MΩ constamp R ₁ 2MΩ constamp R ₁ 20kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kHz 4 μS DF 20 Ω Vs - 4.0, Vpp. Vs. +9 to +32 6.8 mA and D, 9V, Coin Celcluded. hose maximum supper supply. Dles ignal.	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp. +7.5 to +32
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V _s (VDC): Quiescent Current I _Q : Suggested DC Supply: Operating Temperature: Storage Temperature: Package	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 Metal Housing wit 1. BNC Jack (BNC) 2. 3.5 mm TRS Jac 3. XLR Plug with 3	OnF at 1kHz and precent a	ramp R ₁ 20MΩ constamp R ₁ 2MΩ constamp R ₁ 20kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kHz 4 μS DF 20 Ω Vs - 4.0, Vpp. Vs. +9 to +32 6.8 mA and D, 9V, Coin Celcluded. hose maximum supper supply. Dies ignal.	stitute high pass filt stitute high pass filt stitute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 µS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile). r than the above ra	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp. +7.5 to +32 7.0 mA
Gain of Pass Band: -3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Impedance: Maximum Output Vomax: Cable Driving Capability: Power Supply V ₅ (VDC): Quiescent Current Iq: Suggested DC Supply: Operating Temperature: Storage Temperature: Package Input Connector:	(3) hydrophone 10 (4) hydrophone 10 (5) hydrophone 10 40dB The gain is fixed a 0.1Hz ~ 100kHz 35 μS DF 20 Ω Vs-3.4, Vpp. Refer to Chart of 0 +4.5 to +32 1.05 mA 1.2 V to 12.6 V Ba Fixed DC Linear Pc DO NOT use varial DO NOT use switc -40 to 70 °C or -40 Metal Housing wit 1. BNC Jack (BNC) 2. 3.5 mm TRS Jac	OnF at 1kHz and precent a	ramp R ₁ 20MΩ constamp R ₁ 2MΩ constamp R ₁ 20kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kΩ constamp R ₁ 200kHz 4 μS DF 20 Ω Vs - 4.0, Vpp. Vs. +9 to +32 6.8 mA and D, 9V, Coin Celcluded. hose maximum supper supply. Dles ignal.	stitute high pass filt stitute high pass filt stitute high pass filt titute high pass filt 40dB ONLY one gain. 1Hz ~ 640kHz 6 μS SE 10 Ω Vs - 5.0, Vpp. +6 to +32 3.1 mA I, Marine and Autor	er with -3dB freque er with -3dB freque er with -3dB freque 40dB 1Hz ~ 640kHz 6 µS DF 20 Ω Vs - 5.0, Vpp. +6 to +32 5.4 mA mobile).	ancy 0.795Hz. ancy 7.950Hz. ancy 7.950Hz. 40dB 1Hz ~ 350kHz 12 μS SE 10 Ω Vs - 0.7, Vpp. +3.4 to +32. 1.55 mA	1Hz ~ 500kHz 6 μS DF 100 Ω Vs - 4.0, Vpp.

BI SE-SI TI LAG NI

Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU, benthowave.com Revised on 2025/3/4


		110111111111111111111111111111111111111	oenaio wa	0100111	11011000001	
77x50.6x33 mm (TRS Jacks) or 77x50.6x43 mm (BNC Jacks).						
75 grams	75 grams					
A1: Bespoke lengt	th RG58, RG174, or l	RG178 Coax with BN	IC Male to BNC Mal	е.		
A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug.						
A3: Bespoke lengt	A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads.					
A4: Bespoke lengt	th cable with 3.5mm	n TRS Plug to XLR Re	ceptacle with 3 Mal	e Pins.		
A7: Bespoke lengt	th cable with XLR Re	ceptacle Male Pin to	o Wire Leads. Defau	lt: 1m.		
Coated PCB with	Wires and Wire Lea	nds				
5cm wires, twisted.						
Differential Input	Differential Input Wiring: Red: Input Signal +, Blue: Input Signal -, and Use Power Supply Common as input signal common.					
Single-ended Input Wiring: Red: Input Signal, Blue: Input Common and wire Blue Wire to Power Supply Common.				۱.		
5cm wires, twisted.						
Differential Outpu	Differential Output Wiring: White: Output Signal +, Blue: Output Signal -, Black: Output Common.					
Single-ended Output Wiring: White: Output Signal, Black: Output Common.						
5cm wires, twisted. Red: +VDC, Black: Common.						
Common of DC Power Supply is the commons of input and output.						
33x8.9x5	33x8.9x5	32x12x5	30x11.5x5	38x11.5x5	29.2x11.43x5	30x8.9x5
≤ 4 grams		•	•	•	•	•
	75 grams A1: Bespoke length A2: Bespoke length A3: Bespoke length A4: Bespoke length A7:	75 grams A1: Bespoke length RG58, RG174, or A2: Bespoke length cable with 3.5mn A3: Bespoke length cable with 3.5mn A4: Bespoke length cable with 3.5mn A7: Bespoke length cable with XLR Re Coated PCB with Wires and Wire Lea 5cm wires, twisted. Differential Input Wiring: Red: Inpu Single-ended Input Wiring: Red: Inpu 5cm wires, twisted. Differential Output Wiring: White: 0 Single-ended Output Wiring: White: 0 Scm wires, twisted. Red: +VDC, Black Common of DC Power Supply is the coasses.	75 grams A1: Bespoke length RG58, RG174, or RG178 Coax with BN A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm A3: Bespoke length cable with 3.5mm TRS Plug to Wire Le A4: Bespoke length cable with 3.5mm TRS Plug to XLR Re A7: Bespoke length cable with XLR Receptacle Male Pin to Coated PCB with Wires and Wire Leads 5cm wires, twisted. Differential Input Wiring: Red: Input Signal +, Blue: Input Single-ended Input Wiring: Red: Input Signal, Blue: Input Scm wires, twisted. Differential Output Wiring: White: Output Signal +, Blue: Single-ended Output Wiring: White: Output Signal, Blact Scm wires, twisted. Red: +VDC, Black: Common. Common of DC Power Supply is the commons of input and 33x8.9x5 32x12x5	75 grams A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male A7: Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Defaut Coated PCB with Wires and Wire Leads 5cm wires, twisted. Differential Input Wiring: Red: Input Signal +, Blue: Input Signal -, and Use PSingle-ended Input Wiring: Red: Input Signal, Blue: Input Common and wires 5cm wires, twisted. Differential Output Wiring: White: Output Signal +, Blue: Output Signal -, Bl Single-ended Output Wiring: White: Output Signal, Black: Output Common. 5cm wires, twisted. Red: +VDC, Black: Common. Common of DC Power Supply is the commons of input and output. 33x8.9x5 33x8.9x5 33x12x5 30x11.5x5	75 grams A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male. A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male Pins. A7: Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Default: 1m. Coated PCB with Wires and Wire Leads 5cm wires, twisted. Differential Input Wiring: Red: Input Signal +, Blue: Input Signal -, and Use Power Supply Comn Single-ended Input Wiring: Red: Input Signal, Blue: Input Common and wire Blue Wire to Power Sumply Scm wires, twisted. Differential Output Wiring: White: Output Signal +, Blue: Output Signal -, Black: Output Common Single-ended Output Wiring: White: Output Signal, Black: Output Common. Scm wires, twisted. Red: +VDC, Black: Common. Common of DC Power Supply is the commons of input and output. 33x8.9x5 33x8.9x5 33x8.9x5 33x11.5x5	75 grams A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male. A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male Pins. A7: Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Default: 1m. Coated PCB with Wires and Wire Leads 5cm wires, twisted. Differential Input Wiring: Red: Input Signal +, Blue: Input Signal -, and Use Power Supply Common as input signal Single-ended Input Wiring: Red: Input Signal, Blue: Input Common and wire Blue Wire to Power Supply Common 5cm wires, twisted. Differential Output Wiring: White: Output Signal +, Blue: Output Signal -, Black: Output Common. Single-ended Output Wiring: White: Output Signal, Black: Output Common. Scm wires, twisted. Red: +VDC, Black: Common. Common of DC Power Supply is the commons of input and output. 33x8.9x5 33x8.9x5 32x12x5 30x11.5x5 38x11.5x5 29.2x11.43x5

Standard Coated PCB. BII keeps standard parts in stock.

Part Number	- <u>R</u> Input Impedance.	-PCB	
BII1011	200 ΜΩ.		
BII1012	20 ΜΩ.	Cotaed PCB.	
BII1018	200 ΜΩ.	Scm Wires.	
BII1067	20 ΜΩ.	Scill Wiles.	
BII1069	20 ΜΩ.		
-3dB High Pass Frequency: f.	$_{3dBH} = 1/(2\pi R_i C_h)$. Refer to <u>Built-in Filter</u> , <u>R_iC_h Filter</u> and <u>-3dB</u>	Bandwidth.	
Example:	Description:		
BII1011-200MΩ-PCB:	BII1011, Preamp, Input Impedance: 200MΩ, Coated PCB	with 5cm Wires.	
BII1012-20MΩ-PCB:	BII1012, Preamp, Input Impedance: 20MΩ, Coated PCB with 5cm Wires.		
BII1018-200MΩ-PCB:	BII1018, Preamp, Input Impedance: 200MΩ, Coated PCB with 5cm Wires.		
BII1067-20MΩ-PCB:	BII1067, Preamp, Input Impedance: 20MΩ, Coated PCB with 5cm Wires.		
BII1069-20MΩ-PCB:	BII1069, Preamp, Input Impedance: 20MΩ, Coated PCB	with 5cm Wires.	

Coated PCB Wiring: "Output –" is the reverse (180° phase difference) of "Output +". "Output –" MUST NOT be connected to Common or Ground.

Signal Input Type of Coated PCB: Differential, either single ended (SE) or differential (DF) input signals are accepted. Refer to Input Wiring.

Benthowave Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com

Revised on 2025/3/4

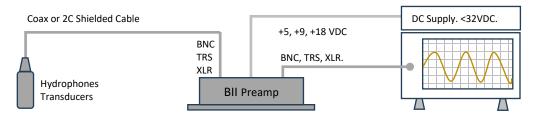
Enclosure Package: Metal or Plastic Housing with Four Mounting Holes.

- 1. BNC: "Bayonet Neill-Concelman", miniature quick connect/disconnect radio/audio frequency connector used for coaxial cable. Fastening Type: Bayonet Lock.
- 2. XLR: Employed for balanced audio interconnections, 3 to 7 contacts. Fastening Type: Latch Lock. NOT supported by BII metal housing because of its large size.
- 3. 3.5mm TRS stand for Tip, Ring, and Sleeve, miniature, quick connect/disconnect audio frequency connector used for shielded cable. Fastening Type: None.
- 4. DIN: Electrical cylindrical connectors, 3 to 14 contacts, Φ20mm diameter, used for audio, RF, digital, and DC or AC power signals. Fastening Type: Threaded.
- 5. DC Power Connector: Supply DC voltage and current to devices, miniature, quick connect/disconnect, used for shielded cable. Fastening Type: None.

Packages:	Signal Type	Small Metal Housing with Four Mounting Holes	Large Metal or Plastic Housing with Four Mounting Holes		
Input Connector:	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)		
input connector:	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 3 Sockets (XLR)		
Output	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)		
Connector:	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 3 Sockets (XLR)		
Danier Complex	DC Power Connector Jack on Housing.				
Power Supply:	Options of Power Supply Cable: <u>DCBP24</u> , <u>DCBS9V</u> , <u>DCBS18V</u> .				
Size LxWxH (mm):	77x50.6x33 (No	BNC Jacks) or 77x50.6x43 (with BNC Jacks)	109.45x83.4x65 (No BNC Jacks) or 109.45x83.4x67 (with BNC Jacks)		
Weight:	115 grams ± 10	%	150 grams ± 10%		

Standard Metal Housing. BII keeps standard parts in stock.

Part Number	- <u>R</u> i	-Input/Output Connector	-Accessory Cable Length	-Accessory Type		
BII1011	200 ΜΩ.	TRS/TRS, BNC/TRS, or XLR/XLR.				
BII1018	200 ΜΩ.	TRS/TRS, BNC/TRS, or XLR/XLR.	0.6m, 0.9m, 1.8m, 10m, 20m, 50m, 100m,	A1 to A7.		
BII1067	20 ΜΩ.	TRS/BNC, BNC/BNC, or XLR/BNC.	200m, 305m.	DCBP24, DCBS18V.		
BII1069	20 ΜΩ.	TRS/TRS, BNC/TRS, or XLR/XLR.				
-3dB High Pass F	requency: $f_{-3dBH} = 1/(2\pi R_i C_h)$. Re	efer to Built-in Filter, R _i C _h Filter and -30	dB Bandwidth.			
Example:		Description:				
ΒΙΙ1011-200ΜΩ-	TRS/TRS-50m-A3- DCBS18V:	BII1011, Preamp, Input Impedance Cable: DC-DCBS18V.	: 200MΩ, Input/Output: TRS/TRS Jacks. 50m A3 Ca	able Accessories. DC Supply		
ΒΙΙ1011-200ΜΩ-	BII1011-200MΩ-BNC/TRS-50m-A4- DCBS18V: BII1011, Preamp, Input Impedance: 200MΩ, Input/Output: BNC/TRS Jacks. 50m A4 Cable Accessories. I Cable: DC-DCBS18V.			able Accessories. DC Supply		
ΒΙΙ1018-200ΜΩ-	TRS/TRS-50m-A3- DCBS18V:	BII1018, Preamp, Input Impedance Cable: DC-DCBS18V.	: 200MΩ, Input/Output: TRS/TRS Jacks, 50m A3 Ca	ble Accessories. DC Supply		
BII1018-200MΩ-BNC/TRS-50m-A4- DCBS18V:		BII1018, Preamp, Input Impedance: 200M Ω , Input/Output: BNC/TRS Jacks, 50m A4 Cable Accessories. DC Supply Cable: DC-DCBS18V.				
BII1067-20MΩ-TRS/BNC-DCBS18V: BII1067, Preamp, Input Impedance:			20MΩ, Input/Output: TRS/BNC Jacks. DC Supply C	Cable: DC-DCBS18V.		
ΒΙΙ1067-20ΜΩ-Β	BII1067-20MΩ-BNC/BNC-DCBS18V: BII1067, Preamp, Input Impedance: 20MΩ, Input/Output: BNC/BNC Jacks. DC Supply Cable: DC-DCBS18V					
BII1069-20MΩ-T	RS/TRS-100m-A3-DCBS18V:	BII1069, Preamp, Input Impedance: $20M\Omega$, Input/Output: TRS/TRS Jacks, $100m$ A3 Cable Accessories. DC Supply Cable: DCBS18V.				
BII1069-20MΩ-B	NC/TRS-100m-A4-DCBS18V:	BII1069, Preamp, Input Impedance: Cable: DCBS18V.	20MΩ, Input/Output: BNC/TRS Jacks, 100m A4 Ca	able Accessories. DC Supply		


Signals and Wiring of Panel-Mount Connectors

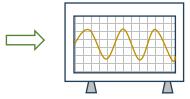
Input or Output Signals			Power Supply
Single Ended (SE)	Differential/Balanced (DF):		Single DC Supply
BNC Jack	3.5mm (1/8") TRS Jack	XLR (Balanced Audio)	Power Jack
Center: Signal Shield: Common	Tip: Signal +, Positive or Hot. Ring: Signal -, Negative or Cold. Sleeve: Common/Ground.	Pin 2, Positive/Hot. Pin 3, Negative/Cold. Pin 1, Shield/Ground.	Center Contact: +VDC. Shell: Common.

Signals and Wiring of Accessory Cables

Input or Output Signals			DC Supply Cable	
Single Ended (SE)	Differential/Balanced Signal (DF)	Differential/Balanced Signal (DF)		
BNC and Coax	3.5mm (1/8") TRS and Cable	XLR (Balanced Audio)	Power Plug	
Center: Signal	Tip, White Wire: Signal +.	Pin 2, Positive/Hot.	Red Banana Plug: +VDC.	
Shield: Common	Ring, Black Wire: Signal	Pin 3, Negative/Cold.	Black Banana Plug: Common.	
Shield: Common	Sleeve, Shield: Common.	Pin 1, Shield/Ground.	Cable Shield, if any: Shielding.	
Warning: "Signal –" is the reverse (180° phase difference) of "Signal +", and "Signal –" MUST NOT be connected to Common or Ground.				

System Wirings of Standalone Preamp.

Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.


Revised on 2025/3/4

Components of an Acoustic Receiving System.

Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.

Accessories:

Part Number: DCBP24.

To Terminals of DC Supply:

a. One Red 4mm Banana Plug. b. One Black 4mm Banana Plug.

DC Power Plug.

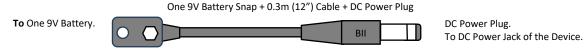
To DC Power Jack of the Device.

Red Banana Plug or Red Wire Lead: +VDC


Black Banana Plug or Black Wire Lead: Common.

Cable Shield, if any: Shielding.

One 1m DC supply cable. One end is with Red and Black Banana Plugs, another end of the cable is with DC Power Plug. Depending on output terminals of buyer's DC Supply, buyer may assemble other type of connectors to DC supply cable at buyer's cost.


Part Number: DCBS18V.

Two 9V Battery Snaps + 0.3m (12") Cable + DC Power Plug

One 0.3m (12") DC supply cable. One end is two 9V Battery Snaps which supplies +18VDC to amplifiers, another end of the cable is with DC Power Plug.

Part Number: DCBS9V. One 0.3m (12") DC supply cable with one 9V Battery Snaps which supplies +9VDC to amplifiers, and one DC Power Plug.

A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male. Default: 0.6m.

A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. Default: 1.828m.

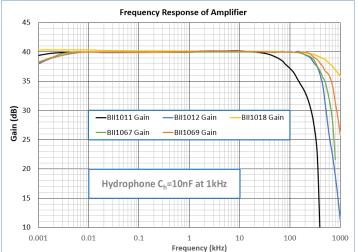
A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. Default: 0.9m.

A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male Pins. Default: 0.9m.

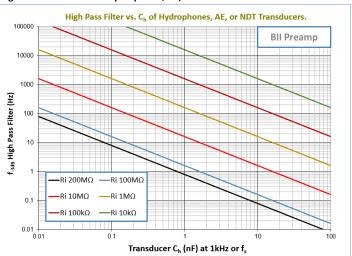
Most recorders and analyzers use XLR Plug with 3 Female Sockets on front panel as differential/balance input connector and BII's XLR of A4 is compatible to it.

A7 Receiving Signal Cable. Part Number: XLR-P-WL-1m, Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Default: 1m.

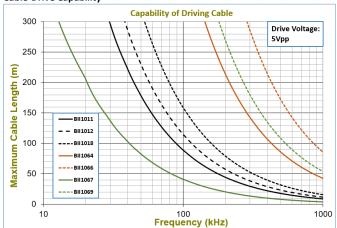
BII


Benthowaye Instrument Inc.

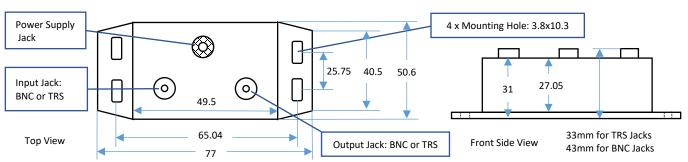
Acoustical Solutions: SONAR, NDT/AE, HIFU.


henthowave com

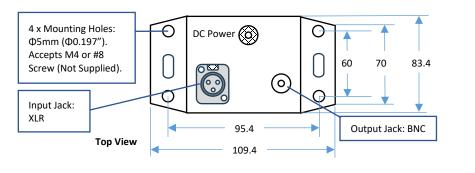
Revised on 2025/3/4

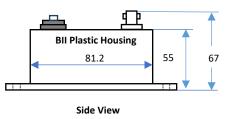


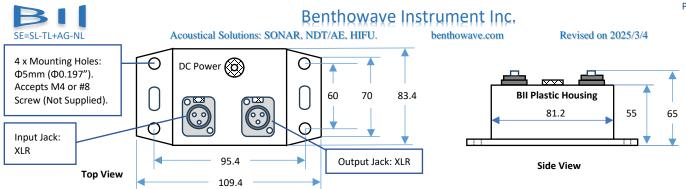
High Pass Filter vs. Ch of Hydrophone, AE, or NDT Transducer.



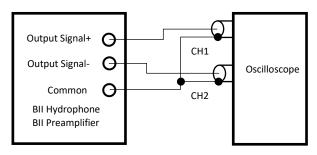
Cable-Drive Capability

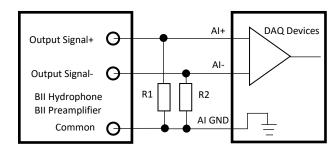





Metal Housing, Outline Dimensions (mm), Illustration only, the scale is not 1:1.

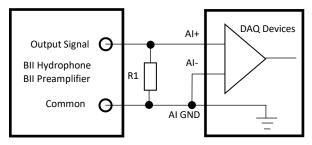
Plastic Housing, Outline Dimensions (mm), Illustration only, the scale is not 1:1.

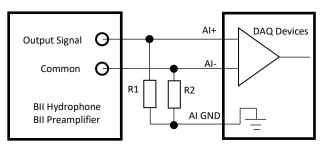


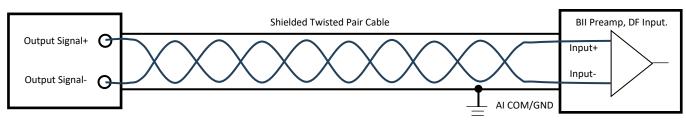


Preamplifier Wirings to DAQ (Data Acquisition): DAQ: Data Acquisition Hardware; Al: Analog Input; CH: Channel; GND: Ground. R1 and R2 resistors are NOT necessary for most applications. If DAQ saturation occurs, use R1 = R2 = $10k\Omega$ to $1M\Omega$ resistors.

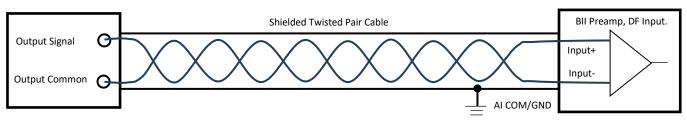
BII's Differential Output to BNC Input of an Oscilloscope

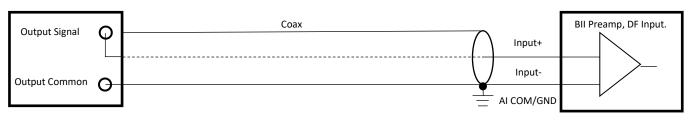

BII's Differential Output to Differential Input of a DAQ




BII's Single-Ended Output to Single-Ended Input of a DAQ

BII's Single-Ended Output to Differential Input of a DAQ




BII's Differential Sound Receiver to Differential Input of a BII Preamp (Signal Conditioner)

BII's Single-ended Receiver to Differential Input of a BII Preamp

BII's Single-ended Receiver to Differential Input of a BII Preamp

Benthowaye Instrument Inc.

Acoustical Solutions: SONAR, NDT/AE, HIFU,

benthowave.com

Revised on 2025/3/4

Questions

What if the connector of my transducer/sensor is SMA or SMC Connector?

SMA (or SMC) to BNC (Male) adaptors are available from many electronic distributors. BII may sell the adaptor as an accessory of the device upon request. By default, BII does NOT supply the adaptor as accessories.

How do I wire 50Ω transducer/sensor to preamplifiers in high frequency applications?

Many BII preamplifiers have non- 50Ω input resistances which does NOT match 50Ω in high frequency applications. Therefore, one T type BNC adaptor and one 50Ω BNC terminal are necessary between 50Ω transducer/sensor and the preamplifier to change the impedance of the preamp to be 50Ω . BII may ship T type BNC adaptor and one 50Ω BNC terminal as accessories of the device. Please specify this request when ordering. **By default, BII does NOT supply these two parts as accessories**. By the way it is NOT necessary to do 50Ω matching in low frequency range applications in which electromagnetic wave lengths are much greater than the cable length.

How do I wire BII preamplifiers to audio connectors XLR Plug with 3 Female Sockets (Differential Signal) of my recording devices?

BII Preamplifiers have panel mount TRS Jacks as output connectors. Please order accessory A4 with preamplifiers. By default, BII does NOT supply the cable assembly as accessories.

My acoustic sensors generate differential signals in MHz range, are TRS connectors of BII preamps suitable for my applications?

Our test shows the TRS connectors (Plug and Jack) of BII preamps can be used up to 20MHz. Test Conditions: TRS Jack with 0.2m cable and TRS plug with 1m cable. Oscilloscope: $1M\Omega||30pF$, Signal Source: DDS Signal Generator.

Can 3.5mm (1/8") TRS be configured for single-ended signal of a hydrophone/transducer which does not have built-in preamplifier?

Yes, the preamp with differential-input TRS can accept single-ended signals from hydrophones/transducers whose TRS wiring should be like followings: **TRS Tip**: Signal. **TRS Ring and Sleeve:** Both terminals are soldered together for Signal Common and Shielding. Common and shielding should be "one-point" contact.

Can BII explain why capacitances of hydrophones/transducers affect high pass filtering?

(1). Hydrophone/transducer is high impedance devices in low frequency range. Its simplified complex impedance = $j/(2\pi fC_h)$, C_h is the capacitance of hydrophone/transducer, f is frequency in Hz. This impedance is in series with preamp R_i and can reach several $M\Omega$ to hundreds $M\Omega$ depending on C_h and f. (2). Most high-performance operational amplifiers (IC chips) can use input resistors R_i up to 1 to 200 $M\Omega$ to avoid bumping into saturation issue.

My recorder (or signal processing device) is about 100m away from the hydrophone (or AE Sensor), which type of preamplifiers should I choose? Choose differential-output preamps to drive the 100m cable and ensure that your data acquisition device can accept differential signals.

Can the hydrophone with differential outputs be wired to single-ended inputs of a DAQ device (Data Acquisition Equipment) such as an Oscilloscope?

Yes, output+ and Common of a BII hydrophone can be used a single-ended signal, or Output- and Common of the hydrophone can be used a single-ended signal. But, neither output+ nor output – of the hydrophone can be wired to common which is going to destroy the hydrophone by short circuit.

Driving 100 Ω Balanced Twisted Pair Cable/Wires and 50 or 75 Ω Coax.

- (1) Impedance of most Balanced Twisted Pair Cable/Wire is from 100Ω to 150Ω .
 - BII preamp has 100Ω output impedance or bespoke impedance to match the impedance of Balanced Twisted Pair Cable/Wires.
- (2) Impedance of most Coax is 50Ω or 75Ω .
 - BII preamp has 50Ω output impedance or bespoke 75Ω impedance to match the impedance of coaxes.