

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com

Revised on 2025/03/08

Hydrophone and Ultrasonic Preamplifier

BII's low noise low power preamplifiers (amplifiers) have built-in filters and their gains are fixed or programmable with digital and analog control. These preamplifiers (amplifiers) are custom-fit for use in broadband (wideband) underwater SONAR, ultrasonic (Ultrasound, NDT, AE) system and material study.

Typical Applications

Hydrophone, SONAR, Underwater Communication, Navigation.	Ultrasonic (Ultrasound, AE, NDT) Testing, Material Characterization.
Seafloor-mapping, Sub-bottom/Sediment Profiler, Acoustic Image.	Low Noise Ultrasonic Preamplifier, Instrumentation, Pulse Amplifier.
Target Strength Testing, Towed Array, Sonobuoy, Bottom Moored Systems.	Sonic Cavitation Noise, Hand-held, Portable, Battery-operated Systems.

BII1090 Series Low Noise Programmable Gain Preamplifier: 0.02Hz to 10MHz, 1.0nV/vHz, 0.8fA/vHz, 80dB Gain Variation, 1000m Cable Capacity.

Digitally programmable-gain amplifiers are invaluable components in SONAR (Underwater and Air) and ultrasound systems which detect a variety of sources with varying signal levels. Gain-selection is accomplished by a two-bit (or one-bit) digital word (TTL/CMOS level compatible), or manual setup.

Specification

Preamplifier	BII1091DF	BII1092SE	BII1092DF	for Differential Sign	BII1094	BII1097	BII1098					
Input Type:	Single ended (SE) or						SE only					
Input Coupling:	AC	, , ,					1 /					
<u> </u>	e₁: 5.6 nV/√Hz,	e₁: 12 nV/√Hz.	e _n : 12 nV/VHz.	e _n : 5.6 nV/vHz.	e₁: 20 nV/√Hz.	e₁: 5.6 nV/√Hz.	e _n : 3.0 nV/vHz.					
Input Referred Noise: (f ≥ 1 kHz)	i _n : 0.6 fA/√Hz.	i _n : 1.0 fA/√Hz.	i _n : 1.0 fA/VHz.	i _n : 0.6 fA/VHz.	i _n : 1.0 fA/√Hz.	i _n : 0.6 fA/√Hz.	i _n : 4.0 fA/VHz.					
(f ≥ 1 kHz)	-	noise density at inp	ut, RTI, $V_n^2 = e_n^2 + [$	in * impedance of th	ne transducer (or hyd	drophone)] ² .						
	44MΩ 4pF	20MΩ 4pF	20MΩ 4pF	10MΩ 4pF	200MΩ 5pF	44MΩ 4pF	1MΩ 8pF					
	Bespoke Input Impe	edance: the default i	mpedance stated al	bove is maximum im	pedance the pream	o can have, bespoke	impedance should					
Innut Impodance D :	be less than the one	above listed respe	ctively.									
Input Impedance R _i :	Ri 50Ω matches 50	Ω coax cable imped	lance and damps d	own NDT transduce	er to achieve good t	ransient or pulse re	esponse or reduce					
	decaying time (or ri	nging) of the transd	ucer.									
	End user may set in	put impedance to b	e 50Ω with a T type	BNC adaptor and a	50Ω BNC Terminato	r.						
Maximum Input:	2.4 Vpp or Maximur	m Output V _{omax} /Gair	, whichever is less.									
	BPF	BPF	BPF	BPF	HPF	BPF	BPF					
	HPF: 1st Order.	HPF: 2 nd Order.	HPF: 2 nd Order.	HPF: 2 nd Order.	HPF: 2 nd Order.	HPF: 2 nd Order.	HPF: 2 nd Order.					
	LPF: 2 nd Order.	LPF: 2 nd Order.	LPF: 1 nd Order.	LPF: 2 nd Order.	HFF. 2 Older.	LPF: 1 nd Order.	LPF: 1 nd Order.					
	Customized high pa	ss or bandpass filter	s, Specify -3dB cut-	off frequencies whe	en ordering.							
		proportional to the	•									
	-				nic devices decrease	•						
				-	frequency range. Fo	•						
Built-in Filter:			ecify a high pass filt	er of a preamp with	-3dB cut-off freque	ency 100 Hz to impr	ove signal to noise					
	ratio of the signals of											
		•	•	•	System Filters Consisting of Standalone Piezoelectric Hydrophones and Standalone Preamps.							
	-3dB High Pass Frequency: $f_{\text{-3dBH}} = 1/(2\pi R_i C_h)$. that is, $R_i = 1/(2\pi f_{\text{-3dBH}}^* C_h)$.											
	Ri: Input Resistance or Impedance of Preamp. Ch: Capacitance of piezoelectric hydrophone/sensor/transducer at 1 kHz (non-resonance											
		or Impedance of P	reamp. C _h : Capacita	ance of piezoelectric		r/transducer at 1 k	Hz (non-resonance					
	measurement) or fs	or Impedance of P (resonance measur	reamp. C _h : Capacita ement such as NDT	ance of piezoelectric pulsing system). Fo	r example:		Hz (non-resonance					
	measurement) or f _s (1) hydrophone 10n	or Impedance of P (resonance measur F at 1kHz and prear	reamp. C_h : Capacita ement such as NDT np R_i 10M Ω consti	nnce of piezoelectric pulsing system). Fo tute high pass filter	r example: with -3dB frequency	/ 1.59Hz.	Hz (non-resonance					
	measurement) or f _s (1) hydrophone 10n (2) hydrophone 10n	or Impedance of P (resonance measur F at 1kHz and prear	reamp. C_h : Capacita ement such as NDT np R_i 10M Ω consti	nnce of piezoelectric pulsing system). Fo tute high pass filter	r example:	/ 1.59Hz.	Hz (non-resonance					
	measurement) or f _s (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB.	or Impedance of P (resonance measur F at 1kHz and prear	reamp. C_h : Capacita ement such as NDT np R_i 10M Ω consti	nnce of piezoelectric pulsing system). Fo tute high pass filter	r example: with -3dB frequency	/ 1.59Hz.	Hz (non-resonance					
Gain Options:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB.	or Impedance of P (resonance measur F at 1kHz and prear	reamp. C_h : Capacita ement such as NDT np R_i 10M Ω consti	nnce of piezoelectric pulsing system). Fo tute high pass filter	r example: with -3dB frequency	/ 1.59Hz.	Hz (non-resonance					
Gain Options:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB.	or Impedance of P (resonance measur F at 1kHz and prear F at 1kHz and prear	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti	ance of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter	r example: with -3dB frequency with -3dB frequency	/ 1.59Hz. / 0.08Hz.						
Gain Options:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB.	or Impedance of P (resonance measur F at 1kHz and prear F at 1kHz and prear 0,20,40,60 dB.	reamp. C_h : Capacita ement such as NDT np R_i 10 $M\Omega$ constinp R_i 200 $M\Omega$ constinp R_i 200,40,60 dB.	pulsing system). Fo tute high pass filter tute high pass filter tute high pass filter 20,40,60,80 dB.	r example: with -3dB frequency with -3dB frequency	/ 1.59Hz. / 0.08Hz.						
	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB.	or Impedance of P (resonance measur F at 1kHz and prear F at 1kHz and prear 0,20,40,60 dB.	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB.	pulsing system). Fo tute high pass filter tute high pass filter tute high pass filter 20,40,60,80 dB.	r example: with -3dB frequency with -3dB frequency	/ 1.59Hz. / 0.08Hz.	30, 60 dB.					
	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz.	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz.	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB. 1Hz to 1/0.35MHz.	ance of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz.	r example: with -3dB frequency with -3dB frequency 20, 60 dB.	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz.	30, 60 dB.					
-3dB Bandwidth:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz.	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB. 1Hz to 1/0.35MHz.	ance of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts f	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain	30, 60 dB. 10kHz to 10MHz					
-3dB Bandwidth: Settling Time, 0.01%:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 2 to 10 µS	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB. 1Hz to 1/0.35MHz. Please refer to Gain 2 to 10 μS	tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts f 2 to 10 µS	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS	30, 60 dB. 10kHz to 10MHz . 0.4 μS					
-3dB Bandwidth: Settling Time, 0.01%: Output Type:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 2 to 10 μS SE	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB. 1Hz to 1/0.35MHz. Please refer to Gain 2 to 10 μS	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE	30, 60 dB. 10kHz to 10MHz 0.4 μS SE					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 2 to 10 µS SE AC	reamp. C _h : Capacita ement such as NDT np R _i 10MΩ consti np R _i 200MΩ consti 0,20,40,60 dB. 1Hz to 1/0.35MHz. Please refer to Gain 2 to 10 μS DF	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 2 to 10 μS SE AC 10 Ω	reamp. C _h : Capacite ement such as NDT np R _i 10MΩ constinp R _i 200MΩ constinp R _i	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC 100 Ω	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC 10 Ω	7 1.59Hz. 7 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC 50 Ω	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC 50 Ω					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp):	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4	reamp. C _h : Capacite ement such as NDT np R _i 10MΩ constinp R _i 200MΩ μS DF AC 100 Ω Vs – 4.0	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs – 4.0	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC	/ 1.59Hz. / 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs - 3.4 1. 50Ω-Impedance N	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Watching Coaxial Ca	reamp. C_h : Capacita ement such as NDT np R_i $10M\Omega$ constinp R_i $200M\Omega$ constinp R_i constinp R_i constinp R_i constinp R_i constinp R_i cons	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs – 4.0	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC 10 Ω Vs - 5.0	7 1.59Hz. 7 0.08Hz. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC 50 Ω Vs – 1.0	30, 60 dB. $\frac{10 \text{kHz to } 10 \text{MHz}}{10.4 \ \mu\text{S}}$ SE AC 50 Ω Vs -1.0					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp): Cable Driving	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance N 2. Custom-fit Cable	or Impedance of P (resonance measure at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Matching Coaxial Ca Length up to 305 m	reamp. C_h : Capacita ement such as NDT np R_i $10M\Omega$ constinp R_i $200M\Omega$ constinp R_i $1000M$ constinp R_i constinp R_i constinp R_i constinp R_i constinp R_i cons	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs = 4.0 I. Cable-Drive Capabi	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC 10 Ω Vs - 5.0	/ 1.59Hz. $/$ 0.08Hz. $/$ 20, 60 dB. $/$ 1Hz to 4.5MHz. $/$ 1.2 μS SE AC $/$ 50 $/$ Vs $-$ 1.0 $/$ 2ed on 5Vpp Sinusoic	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC 50 Ω Vs – 1.0					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp):	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance N 2. Custom-fit Cable Maximum cable lo	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 1 varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Matching Coaxial Ca Length up to 305 mength which a hydro	reamp. C _h : Capacite ement such as NDT np R ₁ 10MΩ constinp R ₁ 200MΩ constinp R	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. -Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs = 4.0 I. Cable-Drive Capabil proportional to out	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC 10 Ω Vs - 5.0 lity. The chart is baseput voltage level of t	/ 1.59Hz. $/$ 0.08Hz. $/$ 20, 60 dB. $/$ 1Hz to 4.5MHz. $/$ 1.2 μS SE AC $/$ 50 $/$ Vs $-$ 1.0 $/$ 2ed on 5Vpp Sinusoic	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC 50 Ω Vs – 1.0					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp): Cable Driving	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance N 2. Custom-fit Cable Maximum cable Io	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 1 varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Matching Coaxial Ca Length up to 305 mength which a hydrocompatible, control	reamp. C _h : Capacite ement such as NDT np R ₁ 10MΩ constinp R ₁ 200MΩ constinp R	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. -Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs = 4.0 I. Cable-Drive Capabic proportional to outputs) and/or Manual	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 µS SE AC 10 Ω Vs - 5.0 lity. The chart is baseput voltage level of t	20, 60 dB. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC 50 Ω Vs – 1.0 ed on 5Vpp Sinusoiche hydrophone	30, 60 dB. $\frac{10 \text{kHz to } 10 \text{MHz}}{10.4 \mu \text{S}}$ SE AC 50 Ω Vs -1.0 dal signals.					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vormax (Vpp): Cable Driving Capability:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance N 2. Custom-fit Cable Maximum cable Io	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 1 varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Matching Coaxial Ca Length up to 305 mength which a hydrocompatible, control	reamp. C _h : Capacite ement such as NDT np R ₁ 10MΩ constinp R ₁ 200MΩ constinp R	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. -Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs = 4.0 I. Cable-Drive Capabic proportional to outputs) and/or Manual	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 μS SE AC 10 Ω Vs - 5.0 lity. The chart is baseput voltage level of telly.	20, 60 dB. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC 50 Ω Vs – 1.0 ed on 5Vpp Sinusoiche hydrophone	30, 60 dB. $\frac{10 \text{kHz to } 10 \text{MHz}}{10.4 \mu \text{S}}$ SE AC 50 Ω Vs $=$ 1.0 dal signals.					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp): Cable Driving	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance N 2. Custom-fit Cable Maximum cable N Digitally (CMOS/TTL One-bit: A0 and Dig One-bit	or Impedance of P (resonance measurif at 1kHz and prear at 1kHz and prear at 1kHz and prear 0,20,40,60 dB. 1Hz to 1/0.35MHz. 1 varies with gains. F 2 to 10 μS SE AC 10 Ω Vs – 3.4 Matching Coaxial Ca Length up to 305 mength which a hydrocompatible, controlital Common for Tw Two-bit	reamp. C _h : Capacita ement such as NDT np R ₁ 10MΩ consti np R ₁ 200MΩ consti np R ₁ 20	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. -Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs = 4.0 I. Cable-Drive Capabic proportional to out puts) and/or Manual Two-bit: A1, A0 and	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 μS SE AC 10 Ω Vs - 5.0 lity. The chart is baseput voltage level of telly. Digital Common for One-bit	20, 60 dB. 20, 60 dB. 1Hz to 4.5MHz. Ith at a specific gain 1.2 μS SE AC 50 Ω Vs – 1.0 ed on 5Vpp Sinusoic the hydrophone Four Gain Selection One-bit	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC 50 Ω Vs – 1.0 dal signals.					
-3dB Bandwidth: Settling Time, 0.01%: Output Type: Output Coupling: Output Impedance: Vomax (Vpp): Cable Driving Capability:	measurement) or fs (1) hydrophone 10n (2) hydrophone 10n 10, 40 dB. 10, 50 dB. 20, 50 dB. 30, 60 dB. 1Hz to 2/0.9MHz. The -3dB Bandwidth 1.2 μS DF AC 20 Ω Vs – 3.4 1. 50Ω-Impedance f 2. Custom-fit Cable Maximum cable le Digitally (CMOS/TTL One-bit: A0 and Dig One-bit Logic Low "0": 0 to	or Impedance of P (resonance measure at 1kHz and prear at 1kHz an	reamp. C _h : Capacita ement such as NDT np R ₁ 10MΩ consti np R ₁ 200MΩ consti np R ₁ 20	nnce of piezoelectric pulsing system). Fo tute high pass filter tute high pass filter 20,40,60,80 dB. 1Hz to 1/0.35MHz. Frequency Charts for 2 to 10 μS DF AC 100 Ω Vs – 4.0 I. Cable-Drive Capability proportional to out puts) and/or Manual Two-bit in Selection Wire is	r example: with -3dB frequency with -3dB frequency 20, 60 dB. 0.1Hz to 250kHz or the -3dB Bandwid 20 μS SE AC 10 Ω Vs - 5.0 lity. The chart is baseput voltage level of telly. Digital Common for	20, 60 dB. 1Hz to 4.5MHz. 1.2 μS SE AC 50 Ω Vs – 1.0 ed on 5Vpp Sinusoiche hydrophone Four Gain Selection One-bit 1.	30, 60 dB. 10kHz to 10MHz 0.4 μS SE AC 50 Ω Vs – 1.0 dal signals.					

Acoustical Solutions: SONAR, NDT/AE, HIFU.

benthowave.com

Revised on 2025/03/08

	Warning: digital outputs, switches, relays, optocouplers etc. can be used for gain selection and the voltage protection rating devices must be greater than power supply voltage level.						ction rating of these
Supply Voltage Vs:	+9 to +32 V	+8 to +32 V	+8 to +32 V	+8 to +32 V	+8 to +32 V	+14 to +35 V	+14 to +35 V
Quiescent Current:	18 or 20 mA	9 mA	13 mA	22 mA	3 mA	19 mA	14.4 mA
Suggested DC Supply V _s :	Fixed DC Linear Po DO NOT use varia	tteries (AA, AAA, C, ower Supply, Not Ind ble power supply wi hing mode DC powe	cluded. hose maximum sup	ply voltage is higher	than the above rat	ed voltage.	
Service Temperature:	-40 to 70 °C or -40) to 158 °F					
Storage Temperature:	-40 to 70 °C or -40) to 158 °F					

Metal or Plastic Housing with Four Mounting Holes.

- 1. BNC: "Bayonet Neill-Concelman", miniature quick connect/disconnect radio/audio frequency connector used for coaxial cable. Fastening Type: Bayonet Lock.
- 2. XLR: Employed for balanced audio interconnections, 3 to 7 contacts. Fastening Type: Latch Lock. Only supported by BII Plastic Housing because of its large size.
- 3. 3.5mm TRS stand for Tip, Ring, and Sleeve, miniature, quick connect/disconnect audio frequency connector used for shielded cable. Fastening Type: None.
- 4. DIN: Electrical cylindrical connectors, 3 to 14 contacts, Φ20mm diameter, used for audio, RF, digital, and DC or AC power signals. Fastening Type: Threaded.
- 5. DC Power Connector: Supply DC voltage and current to devices, miniature, quick connect/disconnect, used for shielded cable. Fastening Type: None.

Packages:	Signal Type	Small Metal Housing with Four Mounting Holes	Large Metal or Plastic Housing with Four Mounting Holes				
. aenageo.	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)				
Input Connector:	Differential	2.5 (4.10%) TDC () (TDC25)	XLR Plug with with 3 Sockets (XLR3)				
•	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 4 Sockets (XLR4)				
Output	Single Ended	BNC Jack (BNC)	BNC Jack (BNC)				
Connector:	Differential	3.5 mm (1/8") TRS Jack (TRS35)	XLR Plug with with 3 Sockets (XLR3)				
Cala Cala attaca	3.5 mm (1/8")	TRS Jack on Housing for tow-bit digital signal. Gain Sele	ection Cable A3: 0.9m Cable with 3.5mm TRS Plug and Wire leads.				
Gain Selection:	BNC Jack on Ho	ousing for one-bit digital signal and analog gain control	signal. Gain Selection Cable: Buy uses buyer's own BNC and coax.				
Danner Council or	DC Power Connector Jack on Housing.						
Power Supply:	Options of Power Supply Cable: DCBP24, DCBS18V.						
Size LxWxH (mm):	77x50.6x33 (No	BNC Jacks) or 77x50.6x43 (with BNC Jacks)	109.45x83.4x65 (No BNC Jacks) or 109.45x83.4x67 (with BNC Jacks)				
Weight:	115 grams ± 10	0%	150 grams ± 10%				
	A1: Bespoke le	ngth RG58, RG174, or RG178 Coax with BNC Male to B	NC Male.				
	A2: Bespoke le	ngth cable with 3.5mm TRS Plug to 3.5mm TRS Plug.					
Accessories:	A3: Bespoke le	ngth cable with 3.5mm TRS Plug to Wire Leads.					
	A4: Bespoke le	ngth cable with 3.5mm TRS Plug to XLR Receptacle wit	h 3 Male Pins.				
	A7: Bespoke le	ngth cable with XLR Receptacle Male Pin to Wire Leads	s. Default: 1m.				

Gain Selection Table with One-bit

A0	BII1091DF			BII1094	BII1097	BII1098	
0	10 dB	10 dB	20 dB	30 dB	20 dB	20 dB	30 dB
1	40 dB	50 dB	50 dB	60 dB	60 dB	60 dB	60 dB

Gain Selection Table with Two-bit

A1	A0	BII1092SE, BII1092DF.	BII1093					
0	0	0 dB	20 dB					
0	1	20 dB	40 dB					
1	0	40 dB	60 dB					
1	1	60 dB	80 dB					

Standard Preamp, Metal or Plastic Housing. BII keeps standard parts in stock.

Part Number	- <u>Gain</u>	-R _i , Refer to R _i C _h Filter.	-Input/Output Connector	-Accessory Cable Length	- <u>Type</u>		
BII1091DF	20/50 dB	44 MΩ.	TRS/TRS, XLR3/XLR3, XLR4/XLR3.	Disababa Assassina			
BII1093	20/40/60/80 dB	10 ΜΩ.	TRS/TRS, XLR3/XLR3, XLR4/XLR3.	Blank: No Accessories.			
BII1097	20/40 dB	44 MΩ.	BNC/BNC, XLR3/BNC, XLR4/BNC.	0.6m, 0.9m, 1.8m, 10m, 20			
BII1098	30/60 dB	1 MΩ.	BNC/BNC, XLR4/BNC.	Cable Accessory. DCBP24,	<u>DCB316V</u> .		
Example:		Description:					
BII1091DF-20/50dB	-44MΩ-TRS/TRS-20m-A4-	BII1091DF, Preamp, Gain: 20/50dB, Input Impedance: 44MΩ, Input and Output: TRS Jacks, Accessory: 20m A4.					
DCBS18V:		DC Supply Cable: DCBS18V.					
BII1091DF-20/50dB	-44MΩ-XLR3/XLR3-20m-A7-	BII1091DF, Preamp, Gain: 20/50dB, Input Impedance: 44MΩ, Input and Output: XLR3 Jacks, Accessory: 20m					
DCBS18V:		A7. DC Supply Cable: DCBS18V.					
BII1007-20/604B-4/	4MΩ-BNC/BNC-DCBS18V:	BII1097, Preamp, Gain: 20/60dB, Input Impedance: 44MΩ, Input and Output: BNC Jacks, DC Supply Cable:					
BII1097-20/000B-4-	+IVISZ-BINC/BINC-DCB318V.	DCBS18V.					
BII1098-30/60dB-1MΩ-BNC/BNC-DCBS18V:		BII1098, Preamp, Gain: 30/60dB, Input Impedance: 1MΩ, Input and Output: BNC Jacks, DC Supply Cable:					
BII1096-30/000B-11	VIIZ-BINC/BINC-DCB318V.	DCBS18V.					

How to Order Bespoke Preamplifiers (Metal or Plastic Housing). Non-stock.

Part Number	- <u>Gain</u>	- <u>R</u> _i .	-HPF/LPF or HPF	-Input/Output Connector	-Accessory Cable Length -Type
BII1091DF			-3dB BPF or HPF in Hz, KHz, MHz.	TRS/TRS, XLR3/XLR3, XLR4/XLR3.	Black No Assessed
BII1092DF	Cain	Defeate	-3dB BPF or HPF in Hz, KHz, MHz	TRS/TRS, XLR3/XLR3, XLR4/XLR3.	Blank: No Accessories.
BII1092SE	Gain Options.	Refer to R _i C _h Filter.	-3dB BPF or HPF in Hz, KHz, MHz.	TRS/BNC, XLR3/BNC, XLR4/BNC.	in meter. Cable Accessory.
BII1093	Options.	NiCh FIILEI.	-3dB BPF or HPF in Hz, KHz, MHz.	TRS/TRS, XLR3/XLR3, XLR4/XLR3.	DCBP24, DCBS18V.
BII1094			-3dB HPF in Hz, KHz, MHz.	TRS/BNC, XLR3/BNC, XLR4/BNC.	<u>DCBF 24</u> , <u>DCB318V</u> .

Acoustical Solutions: SONAR, NDT/AE, HIFU, benthowave.com Revised on 2025/03/08

BII1097	-3d	B BPF or HPF in Hz, KHz, MHz.	BNC/BNC, XLR3/BNC, XLR4/BNC.			
BII1098	-3d	B BPF or HPF in Hz, KHz, MHz.	BNC/BNC, XLR4/BNC.			
To avoid adverse effects of parasitic components of a resistor, input impedance $\leq 1M\Omega$ is recommended for MHz applications.						
Example:		Description:				
BII1091DF-20/	/50dB-10MΩ-10Hz-TRS/TRS-DCBS18V		BII1091DF, Preamp, Gain: 20/50dB, Input Impedance: $10M\Omega$; -3dB Highpass Filter: 10Hz, Input and Output: TRS Jacks, DC Supply Cable: DCBS18V.			
BII1093-20/40	/60/80dB-10MΩ-10Hz/200kHz-	BII1093, Preamp, Gain: 20/	BII1093, Preamp, Gain: 20/40/60/80dB, Input Impedance: 10MΩ; -3dB Bandpass Filter: 10Hz to 200kHz,			
XLR3/XLR3-DC	BS18V:	Input and Output: XLR Jacks	Input and Output: XLR Jacks, DC Supply Cable: DCBS18V.			
BII1097-20/60	dB-20MΩ-10Hz/1MHz-BNC/BNC-	BII1097, Preamp, Gain: 20/6	iOdB, Input Impedance: 20MΩ; -3dB Ban	dpass Filter: 10Hz to 1MHz, Input and		
DCBP24:		Output: BNC Jacks, DC Supp	ly Cable: DCBP24.			

1. Signals and Wiring of Small Metal Housing with Miniature Panel-mount Jacks of BNC, TRS, and DC Power Supply (Not Support DIN and XLR Jack).

1.1 Panel-Mount Connectors

Input or Output Signals		Gain Selection (BII1090 Series)	Gain Selection (BII1090 Series).			
Single Ended (SE)	Differential/Balanced (DF)	Digital Signals, Logic "0" and "1	Digital Signals, Logic "0" and "1".			
BNC Jack	3.5mm TRS, Signal, and Cable	3.5mm TRS Jack	BNC Jack	DC Power Jack,		
Center: Signal Shield: Common	Tip: Signal +, Positive or Hot. Ring: Signal -, Negative or Cold. Sleeve: Shield and Common.	Tip: A1. Ring: A0. Sleeve: Digital COM.	Conductor: A0. Shield: Digital COM.	Center Contact: +VDC. Shell: Common.		
Metal Case is for shielding and grounding.						

1.2 Accessory Cables

Input and Output Signals			Gain Selection (BII1090 Series).		DC Supply Cable		
Single Ended (SE)	Differential/Balanced (DF)		Digital Signals Logic "0" and "1"		Single DC Supply.		
BNC and Coax	Signal and Cable	1/8" TRS	3.5mm TRS and Cable	BNC and Coax	DC Power Plug		
Cantan Cianal	Signal+: White	TRS Tip	Tip, White Wire: A1.		Red Banana Plug: +VDC.		
Center: Signal Shield: Common	Signal-: Black or Red	TRS Ring	Ring, Black or Red Wire: A0.	Conductor: A0.	Black Banana Plug: Common.		
Snieid: Common	Common: Shield	TRS Sleeve	Sleeve, Black Wire: Digital COM. Shield: Digital COM.		Cable Shield: Shielding.		
Warning: "Signal -" i	Warning: "Signal –" is the reverse (180° phase difference) of "Signal +", and "Signal –" MUST NOT be connected to Common or Ground.						

2. Signals and Wiring of Large Metal or Plastic Housing with Panel-mount Jacks of XLR3, DIN3, BNC, TRS, and DC Power Supply.

2.1 Panel-Mount Connectors

Input or Output Sig	nals		Gain Selection (BII109)	Gain Selection (BII1090 Series).		
Single Ended (SE) Differential/Balanced (DF)			Digital Signals, Logic "0	Digital Signals, Logic "0" and "1".		
BNC Jack	Signal and Cable	DIN3 Jack	XLR3 Jack	3.5mm TRS Jack	BNC Jack	DC Power Jack,
Carlor Ciaral	Signal +, Positive or Hot.	Socket 3	Socket 2	Tip: A1.	Conductor AO	0 . 0
Center: Signal	Signal -, Negative or Cold.	Socket 1	Socket 3	Ring: A0.	ησ. ΔΩ	Center Contact: +VDC
Shield: Common	Common/Shielding/Ground.	Socket 2	Socket 1	Sleeve: Digital COM.	Shield: Digital COM.	Shell: Common.
Metal Case is for sh	common/Shielding/Ground.	Socket 2	Socket 1	Sleeve: Digital COM.		<u>l</u>

2.2 Accessory Cables

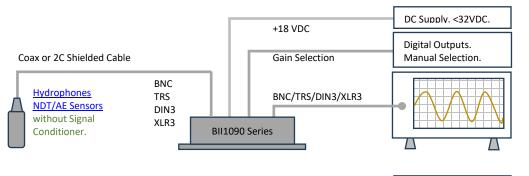
Input and Output Signals			Gain Selection (BII1090 Series).		DC Supply Cable	
Single Ended (SE)	Differential/Balanced (DF)			Digital Signals Logic "0" and "1"		Single DC Supply.
BNC and Coax	Signal and Cable	DIN3	XLR3	3.5mm TRS and Cable	BNC and Coax	DC Power Plug
Center: Signal Shield: Common	Signal+: Red or White	Pin 3.	Pin 2.	Tip, White Wire: A1.	Candustan AO	Red Banana Plug: +VDC.
	Signal-: Black	Pin 1.	Pin 3.	Ring, Black or Red Wire: A0.	Conductor: A0.	Black Banana Plug: Common.
	Common: Shield	Pin 2	Pin 1.	Sleeve, Black Wire: Digital COM.	Shield: Digital COM.	Cable Shield: Shielding.
Warning: "Signal –" is the reverse (180° phase difference) of "Signal +", and "Signal –" MUST NOT be connected to Common or Ground.						

3. Signals and Wiring of Large Metal Housing with Panel-mount Jacks of XLR4, XLR3, DIN4, DIN3, BNC, TRS, and DC Power Supply (Not Support XLR Jack). Note: this package processes signals from hydrophones (sensors) which have built-in preamps and/or filters.

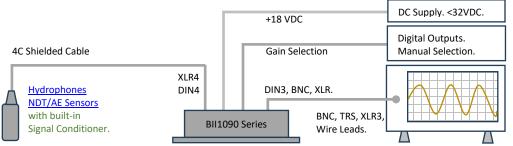
3.1 Differential Input and Differential Output.

Signals	Input Connector		Output Connector			TRS on PNG Commenter for Coin Control		DC Davier lask	
	XLR4	DIN4	XLR3	DIN3	Wires	TRS or BNC Connector for Gain Control		DC Power Jack	
+VDC	Socket 4	Socket 4						Center Contact	
Common	Socket 1	Socket 1						Shell.	
Signal+	Socket 3	Socket 3	Socket 2	Socket 3	Red or White.				
Signal-	Socket 2	Socket 2	Socket 3	Socket 1	Black.				
Signal Common	Socket 1	Socket 1	Socket 1	Socket 2	Shield Drain.				
Shielding	Metal Shell		Metal Shell Shield Drain		Shield Drain.				
A0						TRS: Socket 3	BNC Conductor		
A1					TRS: Socket 1				
Digital COM				TRS: Socket 2	BNC Shell.				

3.2 Differential Input and Single-ended Output.


Signals	Input Connector		BNC Output Connector	TRS or BNC Connector for Gain Control.	DC Power Jack	
	XLR4	DIN4	BNC Output Connector	TKS OF BIVE CONNECTOR FOR Gain CONTROL	DC Power Jack	
+VDC	Socket 4	Socket 4			Center Contact	
Common	Socket 1	Socket 1			Shell.	
Signal+	Socket 3	Socket 3	BNC Center Contact			

Acoustical Solutions: SONAR, NDT/AE, HIFU. benthowave.com


Revised on 2025/03/08

Signal-	Socket 2 Socket 2					
Signal Common	Socket 1	Socket 1	BNC Shell			
Shielding	Metal Shell		BNC Shell			
A0				TRS: Socket 3	BNC Conductor	
A1				TRS: Socket 1		
Digital COM				TRS: Socket 2	BNC Shell.	

Acoustic Programmable-Sensitivity Receiving System

Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.

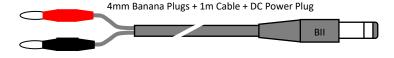


Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.

Typical Components of an Acoustic Receiving System with Programmable Sensitivity.



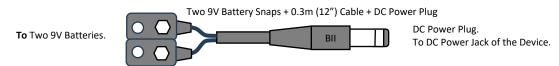
Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.



Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope, Analyzer/Instrument.

Accessories:

Part Number: DCBP24. One 1m DC supply cable with Red and Black Banana Plugs, and DC Power Plug.


DC Power Plug.
To DC Power Jack of the Device.

Red Banana Plug or Red Wire Lead: +VDC.

Black Banana Plug or Black Wire Lead: Common.

Cable Shield, if any: Shielding.

Part Number: DCBS18V. One 0.3m (12") DC supply cable with two 9V Battery Snaps which supplies +18VDC to amplifiers, and one DC Power Plug.

Acoustical Solutions: SONAR, NDT/AE, HIFU.

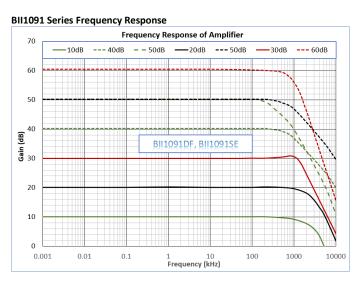
benthowave com

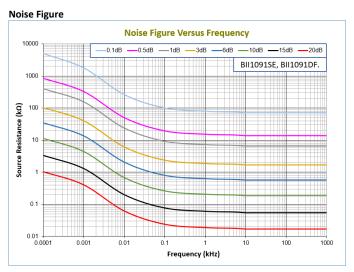
Revised on 2025/03/08

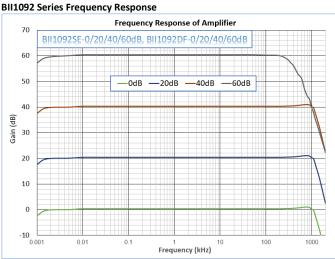
A1: Bespoke length RG58, RG174, or RG178 Coax with BNC Male to BNC Male. Default: 0.6m.

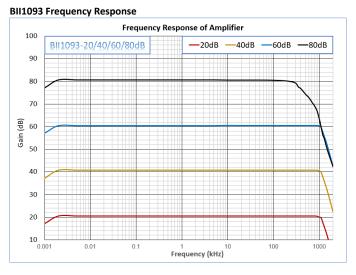
A2: Bespoke length cable with 3.5mm TRS Plug to 3.5mm TRS Plug. Default: 1.828m

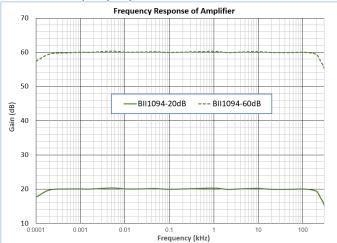
A3: Bespoke length cable with 3.5mm TRS Plug to Wire Leads. Default: 0.9m.


A4: Bespoke length cable with 3.5mm TRS Plug to XLR Receptacle with 3 Male Pins. Default: 0.9m.

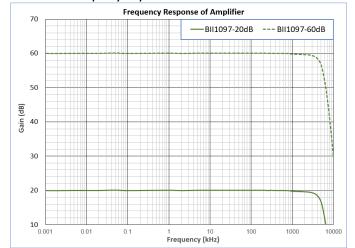



Most recorders and analyzers use XLR Plug with 3 Female Sockets on front panel as differential/balance input connector and BII's XLR of A4 is compatible to it.

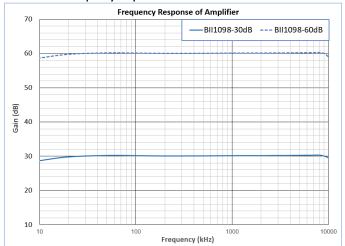

A7 Receiving Signal Cable. Part Number: XLR-P-WL-1m, Bespoke length cable with XLR Receptacle Male Pin to Wire Leads. Default: 1m.

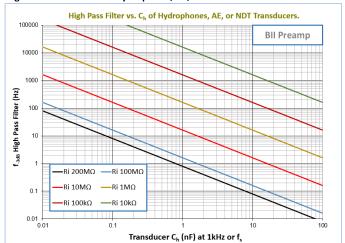


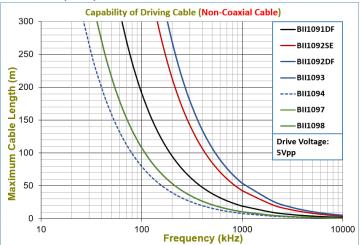
Acoustical Solutions: SONAR, NDT/AE, HIFU,


henthowave com

Revised on 2025/03/08

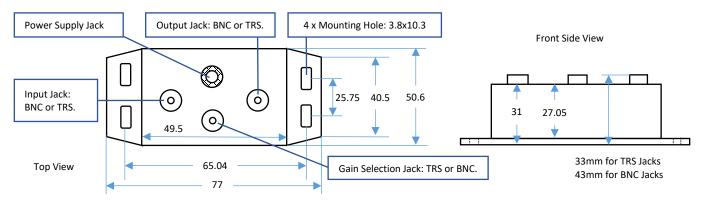

BII1094 Series Frequency Response


BII1097 Series Frequency Response

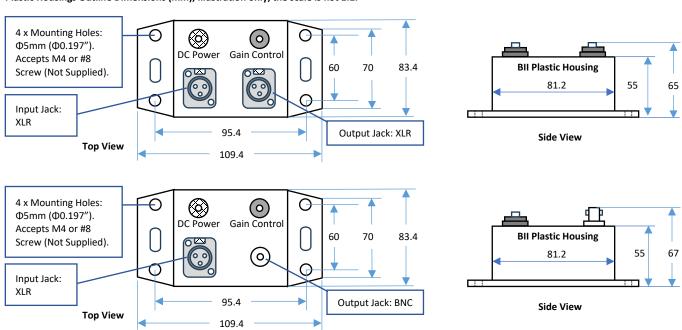

BII1098 Series Frequency Response

High Pass Filter vs. Ch of Hydrophone, AE, or NDT Transducer.

Cable Drive Capability



Acoustical Solutions: SONAR, NDT/AE, HIFU.

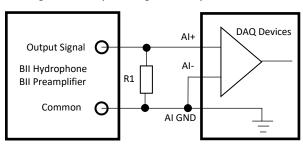

benthowave com

Revised on 2025/03/08

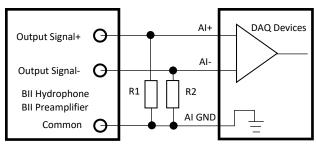
Metal Housing, Programmable Gain Preamplifier BII1090 Series, Outline Dimensions (mm), Illustration only, the scale is not 1:1.

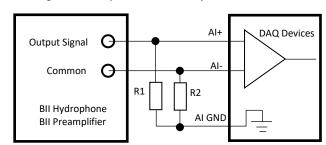


Plastic Housings Outline Dimensions (mm), Illustration only, the scale is not 1:1.



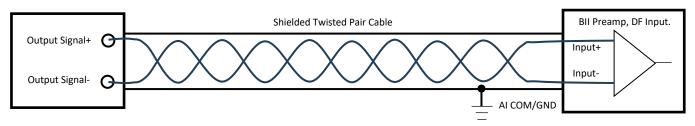
Preamplifier Wirings to DAQ (Data Acquisition): DAQ: Data Acquisition Hardware; Al: Analog Input; CH: Channel; GND: Ground. R1 and R2 resistors are NOT necessary for most applications. If DAQ saturation occurs, use R1 = R2 = $10k\Omega$ to $1M\Omega$ resistors.


BII's Differential Output to BNC Input of an Oscilloscope

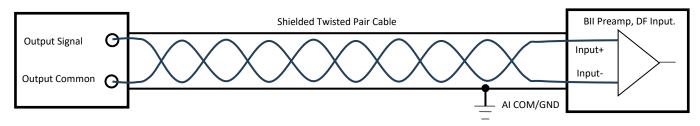

BII's Single-Ended Output to Single-Ended Input of a DAQ

BII's Differential Output to Differential Input of a DAQ

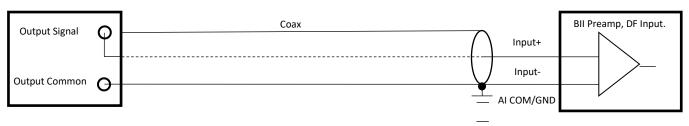
BII's Single-Ended Output to Differential Input of a DAQ



Acoustical Solutions; SONAR, NDT/AE, HIFU.


benthowave.com

Revised on 2025/03/08


BII's Differential Sound Receiver to Differential Input of a BII Preamp (Signal Conditioner)

BII's Single-ended Receiver to Differential Input of a BII Preamp

BII's Single-ended Receiver to Differential Input of a BII Preamp

Questions

What if the connector of my transducer/sensor is SMA or SMC Connector?

SMA (or SMC) to BNC (Male) adaptors are available from many electronic distributors. BII may sell the adaptor as an accessory of the device upon request. By default, BII does NOT supply the adaptor as accessories.

How do I wire 50Ω transducer/sensor to preamplifiers in high frequency applications?

Many BII preamplifiers have non- 50Ω input resistances which does NOT match 50Ω in high frequency applications. Therefore, one T type BNC adaptor and one 50Ω BNC terminal are necessary between 50Ω transducer/sensor and the preamplifier to change the impedance of the preamp to be 50Ω . BII may ship T type BNC adaptor and one 50Ω BNC terminal as accessories of the device. Please specify this request when ordering. **By default, BII does NOT supply these two parts as accessories**. By the way it is NOT necessary to do 50Ω matching in low frequency range applications in which electromagnetic wave lengths are much greater than the cable length.

How do I wire BII preamplifiers to audio connectors XLR Plug with 3 Female Sockets (Differential Signal) of my recording devices?

BII Preamplifiers have panel mount TRS Jacks as output connectors. Please order accessory A4 with preamplifiers. By default, BII does NOT supply the cable assembly as accessories.

My acoustic sensors generate differential signals in MHz range, are TRS connectors of BII preamps suitable for my applications?

Our test shows the TRS connectors (Plug and Jack) of BII preamps can be used up to 20 MHz. Test Conditions: TRS Jack with 0.2m cable and TRS plug with 1m cable. Oscilloscope: $1M\Omega||30pF$, Signal Source: DDS Signal Generator.

Can 3.5mm (1/8") TRS be configured for single-ended signal of a hydrophone/transducer which does not have built-in preamplifier?

Yes, the preamp with differential-input TRS can accept single-ended signals from hydrophones/transducers whose TRS wiring should be like followings: **TRS Tip**: Signal. **TRS Ring and Sleeve:** Both terminals are soldered together for Signal Common and Shielding. Common and shielding should be "one-point" contact.

Can BII explain why the capacitance of my hydrophone/transducer affect high pass filtering?

(1). Hydrophone/transducer is high impedance devices in low frequency range. Its simplified complex impedance = $j/(2\pi fC_h)$, C_h is the capacitance of hydrophone/transducer, f is frequency in Hz. This impedance is in series with preamp R_i and can reach several $M\Omega$ to hundreds $M\Omega$ depending on C_h and f. (2). Most high-performance operational amplifiers (IC chips) can use input resistors R_i up to 1 to 200 $M\Omega$ to avoid bumping into saturation issue.

My recorder (or signal processing device) is about 100m away from the hydrophone (or AE Sensor), which type of preamplifiers should I choose?

Choose differential-output preamps to drive the 100m cable and ensure that your data acquisition device can accept differential signals.

I need a low noise preamp, How do I choose the BII preamps?

Generally, choose low in preamp if useful signal consists of low frequency components less than 10 kHz; choose low en preamp if frequency components of useful signal are greater than 10 kHz.

Can the hydrophone with differential outputs be wired to single-ended inputs of a DAQ device (Data Acquisition Equipment) such as an Oscilloscope?

Yes, output+ and Common of a BII hydrophone can be used a single-ended signal, or Output- and Common of the hydrophone can be used a single-ended signal. But, neither output+ nor output – of the hydrophone can be wired to common which is going to destroy the hydrophone by short circuit.

Driving 100Ω Balanced Twisted Pair Cable/Wires and 50 or 75 Ω Coax.

(1) Impedance of most Balanced Twisted Pair Cable/Wire is from 100Ω to 150Ω .

BII preamp has 100Ω output impedance or bespoke impedance to match the impedance of Balanced Twisted Pair Cable/Wires.

(2) Impedance of most Coax is 50Ω or 75Ω .

BII preamp has 50Ω output impedance or bespoke 75Ω impedance to match the impedance of coaxes.