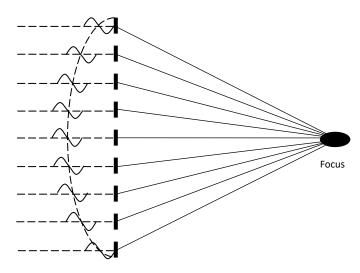
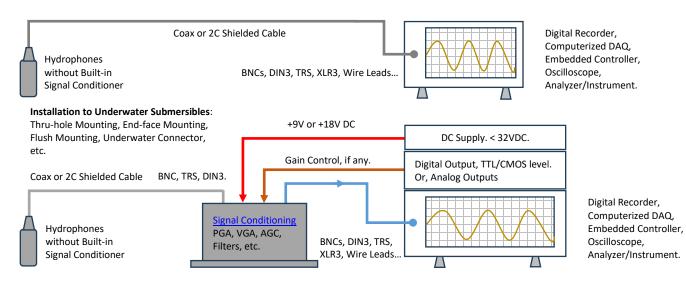


BII7070 Series Directional Hydrophone (Acoustic Sensor) and Planar Array Element


BII's directional hydrophones have conical beams for uses in detection of weak signals, broadband signals, pipeline leaks, and tracking of sound sources underwater. Low noise hydrophone (below sea-state zero) is available for noise measurement. These acoustic sensors are also designed for applications in air to detect acoustic emission and stress waves. (Note: The couplant such as water or gel is a must-have material to provide efficient acoustic coupling between the Hydrophone face and the piece under test in air applications.)

Below the critical frequency fc, the hydrophones are of single beam without side lobes. This feature makes the hydrophone be an ideal candidate for target angle estimation systems or sound source tracking systems. With built-in preamplifiers, the hydrophones have higher sensitivity and can transmit signal over long cable.

Linear (Rectangular) Array Beam Steering


Linear, Annular, and Planar Array Beam Focusing

Typical Applications

. /		
Direction-finding Sonar, Tracking of Acoustic Tags	Array Elements for Array Focusing and Beam Steering	I
LBL/SBL/USBL Positioning System	Noise Measurement, Bioacoustic Research of Marine Animals	l
Locating Marker/Pinger/Beacon/Transponder	Structural Health Monitoring, Acoustic Emission Detection/AE Sensor	l
Acoustic Pipeline Leak Detection	Monitoring Aquarium/Pool Safety/Alarm System	l

System Configuration of Receiving Sounds and Waves.

Benthowave Instrument Inc. Underwater Sound Solutions www.benthowav

www.benthowave.com

	in water unless stated othe							
Part Number:	BII7075	BII7076	BII7077	BII7078	BII7078DF			
	-205.5 dB V/μPa ± 2 dB.				-195.5 dB V/μPa ± 2 dE			
Sensitivity @ 1kHz:	-	nsion Cable (dB) = 20*log[C			er.			
	· · · ·	nce; C _c : Capacitance of Exte		00 pF/meter roughly.				
FFVS:		vity, Refer to Graph of FFVS	<u>S vs. Frequency</u> .					
	1 Hz ~ 550 kHz at ±3 dB V							
Usable Frequency:		C_h and R_i constitute a high pass filter3dB high pass filter $f_{-3dB} = 1/(2\pi R_i C_h)$.						
in Water.		R: Input Resistance or Impedance of Preamp. C _h : Capacitance of hydrophone at 1 kHz. For example: A BII7075 and a BII preamp of R_1 = 100 M Ω are used to detect sounds, -3dB high pass frequency of detection = 5.6 Hz.						
				• • • •				
Llashla Francisco a Aire		eamp of $R_i = 200 M\Omega$ are use 1Hz ~ 8kHz	1					
Usable Frequency in Air:	1Hz ~ 16kHz		1Hz ~ 6kHz	1Hz ~ 3kHz	1Hz ~ 3kHz			
Capacitance Ch @ 1kHz:	0.286 nF	0.885 nF	1.351 nF	4.546 nF	1.1 nF			
Dissipation @ 1kHz:	0.026 @ 1 kHz.							
	46.7 – 10*log f	42.3 – 10*log f	40.3 – 10*log f	35.2 – 10*log f	35.3 – 10*log f			
Noise Density at f << fs:		Frequency which is close to						
dB μPa/VHz		datasheet are calculated va						
· · · ·	3. As hydrophones works with preamps or data acquisition modules, total noise density is determined by all noise sources. Generally, the total noise density is much higher than the ones stated in this datasheet.							
	4	a signal conditioning before		ofor to signal conditioning	and order constately			
		mplifier PGA, 0/20/40/60 d		efer to <u>signal conditioning</u>	, and order separately.			
		r (VGA): 60 to 70 dB Range.						
ignal Conditioning:		ol (AGC) Amplifier: 100 dB C						
		n, High-pass, Low-pass, and						
		evices for portable uses, an	•	undles for underwater sul	omersibles			
Receiving Face:	Circular Planar Face				5111115151153.			
-		ranh of Directivity Dattorn						
Directivity Pattern:		raph of <u>Directivity Pattern</u> .						
Side Lobe Level:		en f > fc; No side lobe wher						
0.10.0 M/2.141	· · · · · · · · · · · · · · · · · · ·	pression is available for BII7						
-3dB Beam Width:	9900°/f(kHz)	4650°/f(kHz)	3200°/f(kHz)	1700°/f(kHz)	1700°/f(kHz)			
Frequency f-3dBML:	74 kHz	41 kHz	32 kHz	15 kHz	15 kHz			
requeries roubler	f-3dBML: Main Lobe drops -	3dB at ±90° normal to acou	ustic axis.					
Critical Frequency f _c :	180 kHz	100 kHz	78 kHz	36 kHz	36 kHz			
Cilical Frequency Ic.	f _c : Side lobes exist in the	case of operating frequence	y f > fc; The hydrophone h	as no side lobe in the case	e of f ≤ fc.			
±90° Sidelobe Frequency	240 kHz	133 kHz	104 kHz	49 kHz	49 kHz			
f _n :	f _n : First Side Lobes exist a	at ±90° normal to acoustic a	ixis in the case of operatin	g frequency f = fn.				
	Single Ended			0 1 7	Differential Output			
Signal Output Type:	Differential signal has better capability to reduce and reject EMI noise, especially over long cable.							
	143.6 dB along acoustic a	137.6 dB.						
	Other direction: 141.0 dB			6 I. I. I. I. I.	141.0 dB.			
Acceleration Sensitivity:	Bespoke Vibration Compensation, available upon request: When suspended from a ship or boat, buoy, or used in towed array, the							
	hydrophone experiences a large movement and induced vibration resulting from surface waves, currents, hydrodynamic flow turbulence, cable movement, etc The translational acceleration in axial direction can be cancelled with special design and							
				•	currents, hydrodynamic flo			
μPa/(m/s²)	turbulence, cable move	ment, etc The translation	onal acceleration in axia	I direction can be cance	currents, hydrodynamic flo elled with special design a			
	turbulence, cable move construction, and acceler	ment, etc The translation ration sensitivity in other of	onal acceleration in axia directions are also lower (I direction can be cance	currents, hydrodynamic flo			
	turbulence, cable move construction, and acceler vibration can be reduced	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity w	onal acceleration in axia directions are also lower (ith Compensation:	l direction can be cance partially cancelled). Spuri	currents, hydrodynamic flo elled with special design a ous signals caused by induc			
μPa/(m/s²)	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity w direction of the hydrophon	onal acceleration in axia directions are also lower (ith Compensation: ie. 2. \leq 90 to 110 dB in oth	l direction can be cance partially cancelled). Spuri	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone.			
μPa/(m/s²)	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity w	onal acceleration in axia directions are also lower (ith Compensation: ie. 2. \leq 90 to 110 dB in oth	l direction can be cance partially cancelled). Spuri	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No			
μPa/(m/s ²) Underwater Projector: Resonance fs:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz	ment, etc The translatic ration sensitivity in other of . Acceleration Sensitivity w direction of the hydrophon rophone as a sound project	onal acceleration in axia directions are also lower (ith Compensation: ie. 2. \leq 90 to 110 dB in oth cor in the air.	I direction can be cance partially cancelled). Spuri er directions of the hydro	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2	Arment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4	onal acceleration in axia directions are also lower (ith Compensation: ie. $2. \le 90$ to 110 dB in oth cor in the air. 159.3	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m.	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop	ment, etc The translatic ration sensitivity in other of . Acceleration Sensitivity w direction of the hydrophon rophone as a sound project	onal acceleration in axia directions are also lower (ith Compensation: ie. $2. \le 90$ to 110 dB in oth cor in the air. 159.3	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2	Arment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4	onal acceleration in axia directions are also lower (ith Compensation: ie. $2. \le 90$ to 110 dB in oth cor in the air. 159.3	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop	Arment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 bs 12dB/octave below fs and	onal acceleration in axia directions are also lower (ith Compensation: ie. $2. \le 90$ to 110 dB in oth cor in the air. 159.3	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. No N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m.	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Driv	Arment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 bs 12dB/octave below fs and	onal acceleration in axia directions are also lower (ith Compensation: ne. 2. ≤ 90 to 110 dB in oth for in the air. 159.3 d drops 6dB/octave above	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. NO N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 155.4 ve Voltage	onal acceleration in axia directions are also lower (ith Compensation: ne. 2. ≤ 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V	translation sensitivity in other of Acceleration Sensitivity in other of Acceleration Sensitivity we direction of the hydrophone rophone as a sound project 155.4 Is 12dB/octave below fs and the Voltage Voltage. 100% at \leq 30 Vpp of Pa pressure and limited by the sensitivity of the sensitivity of the sensitity of the sensitity of the sensitit	onal acceleration in axia directions are also lower (ith Compensation: ne. 2. ≤ 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging (translation sensitivity in other of Acceleration Sensitivity in other of Acceleration Sensitivity we direction of the hydrophone rophone as a sound project 155.4 Is 12dB/octave below fs and the Voltage Voltage. 100% at \leq 30 Vpp of Pa pressure and limited by the sensitivity of the sensitivity of the sensitity of the sensitity of the sensitit	onal acceleration in axia directions are also lower (ith Compensation: ne. 2. ≤ 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w 3. Thru-hole Mounting w	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 155.4 12dB/octave below fs and re Voltage Voltage. 100% at \leq 30 Vpp of Pa pressure and limited by to (FH) rith Single O-ring (THM-7/10)	onal acceleration in axia directions are also lower (ith Compensation: ne. 2. ≤ 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mounting	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth cor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs.	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountin 5. Bolt Fastening Mountin	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth for in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".) 3".)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. e has wire leads or a non-	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountin 5. Bolt Fastening Mountin 6. Bolt-Fastening Mountin	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth cor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. e has wire leads or a non-	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountin 5. Bolt Fastening Mountin 6. Bolt-Fastening Mountin	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth cor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. e has wire leads or a non-	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. N/A N/A N/A N/A N/A N/A N/A			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Driv 10% at Maximum Driv 10% at Maximum Driv Waximum 300 m or 3 MP 1. Default: Free Hangin 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountii 5. Bolt Fastening Mountii 6. Bolt-Fastening Mountii 7. Free-hanging with Mal 8. End-face Mounting (FGM	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophone rophone as a sound project 155.4 In 1208/octave below fs and Ve Voltage Voltage. 100% at ≤ 30 Vpp of Pa pressure and limited by the (FH) With Single O-ring (THM-7/10) With Single O-ring (THDO-7), ing (Stainless Steel) (BFM-7), ing (Plastics) (BFMP-NPT3/6) ing with Free Hanging (BFM) Le Underwater Connector (F FMS) M-Ф110)	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth cor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM FHUWC-4P)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. has wire leads or a non-	currents, hydrodynamic fle elled with special design a ous signals caused by induc phone. NO N/A N/A N/A N/A N/A waterproof connector.			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Driv 10% at Maximum Driv 10% at Maximum Driv Waximum 300 m or 3 MP 1. Default: Free Hangin 2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountii 5. Bolt Fastening Mountii 6. Bolt-Fastening Mountii 7. Free-hanging with Mal 8. End-face Mounting (FGM	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. ≤ 90 to 110 dB in oth cor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM FHUWC-4P)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. has wire leads or a non-	currents, hydrodynamic fle elled with special design a ous signals caused by induc phone. NO N/A N/A N/A N/A N/A waterproof connector.			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging (2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountin 5. Bolt Fastening Mountin 7. Free-hanging with Mal 8. End-face Mounting (FGM Please refer to online door	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophone rophone as a sound project 155.4 In 1208/octave below fs and Ve Voltage Voltage. 100% at ≤ 30 Vpp of Pa pressure and limited by the (FH) With Single O-ring (THM-7/10) With Single O-ring (THDO-7), ing (Stainless Steel) (BFM-7), ing (Plastics) (BFMP-NPT3/6) ing with Free Hanging (BFM) Le Underwater Connector (F FMS) M-Ф110)	onal acceleration in axia directions are also lower (ith Compensation: ite. $2. \le 90$ to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM FHUWC-4P)	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. has wire leads or a non-	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. NO N/A N/A N/A N/A N/A waterproof connector.			
μPa/(m/s ²) Underwater Projector: Resonance fs: TVR at fs: μPa/V at 1m. Maximum Drive Voltage: Maximum Pulse Length: Duty Cycle: Operating Depth:	turbulence, cable move construction, and acceler vibration can be reduced 1. ≤ 80 to 100 dB in axial Yes. Do NOT use the hydr 305 kHz 143.2 Approximately, TVR drop 600 Vpp 100 mS at Maximum Drive 10% at Maximum Drive V Maximum 300 m or 3 MP 1. Default: Free Hanging (2. Thru-hole Mounting w 3. Thru-hole Mounting w 4. Bolt Fastening Mountii 5. Bolt Fastening Mountii 6. Bolt-Fastening Mountii 7. Free-hanging with Mal 8. End-face Mounting (FGM Please refer to online doo SE: Single Ended Output H	ment, etc The translation ration sensitivity in other of Acceleration Sensitivity we direction of the hydrophon rophone as a sound project 155.4 157.4 1	onal acceleration in axia directions are also lower (ith Compensation: ite. 2. \leq 90 to 110 dB in oth tor in the air. 159.3 d drops 6dB/octave above or 10.6 Vrms. the cable length if the cabl 6", or THM-5/8".) /16".) /16", or BFM-5/8".) 3".) I-FH-M6, BFM-FH-M8, BFM FHUWC-4P) <u>f</u> for a complete list of Mo tial Output Hydrophones.	l direction can be cance partially cancelled). Spuri er directions of the hydro 174.3 fs. has wire leads or a non-	currents, hydrodynamic flo elled with special design a ous signals caused by induc phone. NO N/A N/A N/A N/A N/A waterproof connector.			

Benthowave Instrument Inc.

3. Shielded Cable with Polyurethane Jacket, $\Phi D=2.6 \text{ mm}$ (SC26). (SE). 4. Shielded Cable with Rubber Jacket, $\Phi D=6.5 \text{ mm}$ (SC65), (SE). 5. Default: Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=3.6 \text{ mm}$ (SC36), (DF). 6. Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=6.0 \text{ mm}$ (SC47), (DF). 7. Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=6.0 \text{ mm}$ (SC47), (DF). 8. Coax RG178/U, $\Phi D=1.8 \text{ mm}$ (RG178) up to 200°C. (SE). 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, $\Phi D=3.2 \text{ mm}$ (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF. 3. XIR Receptacle with 3 Male Pins (XLR3), Max. Diameter Ф20.2 mm, for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Ф20.2 mm, for SE or DF. 6. Underwater Mateable Connector (2 pin) (UMC2P), Max. Diameter Ф21.5 to Φ35 mm, for SE.
S. Default: Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=3.6 \text{ mm}$ (SC36), (DF). 6. Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=6.0 \text{ mm}$ (SC60), (DF). 7. Shielded Cable with Twisted Pair and Polyurethane Jacket, $\Phi D=4.7 \text{ mm}$ (SC47), (DF). 8. Coax RG178/U, $\Phi D=1.8 \text{ mm}$ (RG178) up to 200°C. (SE). 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, $\Phi D=3.2 \text{ mm}$ (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter $\Phi 14.3 \text{ mm}$, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter $\Phi 10.5 \text{ mm}$, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter $\Phi 17 \text{ mm}$). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter $\Phi 20.2 \text{ mm}$, for SE or DF.
6. Shielded Cable with Twisted Pair and PVC Jacket, $\Phi D=6.0 \text{ mm}$ (SC60), (DF). 7. Shielded Cable with Twisted Pair and Polyurethane Jacket, $\Phi D=4.7 \text{ mm}$ (SC47), (DF). 8. Coax RG178/U, $\Phi D=1.8 \text{ mm}$ (RG178) up to 200°C. (SE). 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, $\Phi D=3.2 \text{ mm}$ (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
Connector: 7. Shielded Cable with Twisted Pair and Polyurethane Jacket, $\Phi D=4.7 \text{ mm}$ (SC47), (DF). 8. Coax RG178/U, $\Phi D=1.8 \text{ mm}$ (RG178) up to 200°C. (SE). 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, $\Phi D=3.2 \text{ mm}$ (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter $\Phi14.3 \text{ mm}$, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter $\Phi10.5 \text{ mm}$, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter $\Phi17 \text{ mm}$). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter $\Phi20.2 \text{ mm}$, for SE or DF.
8. Coax RG178/U, ΦD=1.8 mm (RG178) up to 200°C. (SE). 9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, ΦD=3.2 mm (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Φ14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
9. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, $\Phi D=3.2 \text{ mm}$ (SC32), up to 200°C. Non-waterproof, for dry use ONLY, 7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Ф17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Ф20.2 mm, for SE or DF.
7. Two or Three Conductor Unshielded Cable (USC) for Underwater Connector 2 pins or 3 pins. Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Φ14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
Differential/balanced signals over shielded twisted pair cable is recommended to reject Electromagnetic Interference (EMI). Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Ф17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Ф20.2 mm, for SE or DF.
Cable Length: 1. Default: 6 m. 2. Custom-fit Cable Length. SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Φ14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
SE: Single ended Output, DF: Differential Output. 1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Ф14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Ф10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Ф17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Ф20.2 mm, for SE or DF.
1. Default: Wire Leads (WL) 2. Male BNC (BNC), Max. Diameter Φ14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
2. Male BNC (BNC), Max. Diameter Φ14.3 mm, for SE ONLY. BNC with RG178 Coax: Service Temperature up to 165°C or 329°F. 3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF. 4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF. 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
Connector:3. 1/8" (3.5mm) TRS Plug (TRS), Max. Diameter Φ10.5 mm, for SE or DF.4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF.5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
Connector:4. DIN Receptacle with 3 Male Pins (DIN3), (Max. Diameter Φ17 mm). for SE or DF.5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
Connector: 5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
5. XLR Receptacle with 3 Male Pins (XLR3), Max. Diameter Φ20.2 mm, for SE or DF.
6. Underwater Mateable Connector (2 pin) (UMC2P), Max. Diameter Φ21.5 to Φ35 mm, for SE.
Underwater Mateable Connector (3 pin) (UMC3P), Max. Diameter Φ21.5 to Φ35 mm, for SE or DF.
UMC3P is from global manufacturers of underwater connectors. Its part number is listed in quote in detail.
Underwater Mateable Connectors are for underwater uses. Other connectors/wire leads are for dry uses and are not waterproofe
δize: Φ21x20 mm Φ27x20 mm Φ33x20 mm Φ60x20 mm Φ60x20 mm
Other Mounting Types: Actual length depends on Mounting Parts.
Weight: 100 grams 150 grams 210 grams 550 grams 550 grams
Actual weight depends on Mounting Parts, Cable Types and Length.
1. Default: -10°C to +60°C or 14°F to 140°F.
Operation Temperature: 2. Bespoke: -10°C to 120°C, or 14°F to 248°F. Append -HT to part number. Maximum Operating Depth at 120°C or 248°F: 100 m.
Storage Temperature: -20°C to +60°C or -4°F to 140°F.
Underwater Projector Application: for 50Ω BNC/SMA/SMC connector, it is buyer's sole responsibility to make sure that the BNC/SMA/SMC shield of the s
Underwater Projector Application : for 50Ω BNC/SMA/SMC connector, it is buyer's sole responsibility to make sure that the BNC/SMA/SMC shield of the s source is firmly grounded for operating safety before hooking up transducer/hydrophone to the signal source. Coax with BNC/SMA/SMC is not intended for h
source is firmly grounded for operating safety before hooking up transducer/hydrophone to the signal source. Coax with BNC/SMA/SMC is not intended for h

How to Order Standard Hydrophones. BII Keeps Standard Products in Stock.

Hydrophone Part Number	-Mounting Part	Mounting Part -Cable Length -Cable Type -Connector Type			
BII7075, BII7076, BII7077, BII7078.	FU: Free Llenging	(m/10.7ft)	RG174 Coax	BNC	
BII7078DF	FH: Free Hanging. 6m (19.7ft) SC60 Shielded Cable with Twisted Pair WL, TRS, XLR3, DIN3.				
Example:	Description				
BII7075-FH-6m-RG174-BNC	BII7075 Hydrophone, Free Hanging, 6m RG174 Coax, BNC Male.				
BII7078DF-FH-6m-SC60-XLR3	BII7078DF Hydrophone, Free Hanging, 10m Shielded Cable with Twisted Pair SC60, XLR Receptacle with 3 Male Pins.				

How to Order Bespoke Hydrophones. Non-stock.

Hydrophone Part Number	Mounting Part -Cable Length -Cable Type -Connector Type				
BII7075, BII7072, BII7073, BII7078, BII7078DF.	Mounting Options.	in meter.	Cable Options.	Connector Options.	
Example:	Description	Description			
BII7075-THM-7/16"-0.6m-SC36-WL	BII7075 Hydrophone, Thru-hole Mounting THM-7/16", 0.6m Shielded Cable SC36, Wire Leads.				
BII7075-HT-FH-6m-RG178-BNC	BII7075 Hydrophone, Service Temperature: -10°C to 120°C (14°F to 248°F), Free Hanging, 6m RG178 Coax, BNC Male.				
BII7078DF-BFM-5/8"-10m-SC60-WL	BII7078DF Hydrophone, Bolt-fastening Mounting BFM-5/8", 10m Shielded Cable SC60, Wire Leads.				
BII7078DF-FH-0.6m-SC65-UMC3P	BII7075DF Hydrophone, Free Hanging, 0.6m Shielded Cable SC65, 3-pin Underwater Mateable Connector.				

Wirings

virings	-				- 1
Differential Output:	Wire Leads	UMC3P	DIN3	TRS	XLR3
Signal +	White or Red	Pin 2	Pin 3	Tip, Positive/Hot	Pin 2, Positive/Hot.
Signal -	Black	Pin 1	Pin 1	Ring, Negative/Cold	Pin 3, Negative/Cold.
Common & Shielding	Shield	Pin 3	Pin 2	Sleeve, Ground/Common	Pin 1, Shield/Ground.
Single Ended Output:	Wire Leads	UMC3P	DIN3	BNC/SMA/SMC	Coax with Wire Leads
Signal	White or Red	Pin 2	Pin 3	Center Contact	Coax Center Contact
Signal Common	Black	Pin 1	Pin 1	Shield	Coax Shield
Shielding	Shield	Pin 3	Pin 2	Shield	Coax Shield
Wiring of Unshielded	d			tor, Fixed.).	
Cable:	Wire Leads WL	Locking Sleeve:	Locking Sleeve: DLSA-M.		
Signal	White	Contact 2	Contact 2		
Signal Common	Black	Contact 1			

Question:

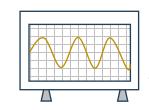
What if the mating connector of my DAQ module or recording device is NOT available from BII? A bespoke connector adaptor might be assembled by BII and BII ships the adaptor to buyer as accessory of the device. Please contact BII for customizations. Many adaptors for standard connectors are available in worldwide electronic suppliers such as BNC to SMA, BNC to SMC, XLR to TRS, etc. Check out your local suppliers.

Benthowave Instrument Inc.

Page 4 of 6

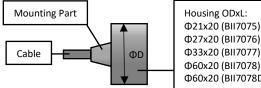
Underwater Sound Solutions

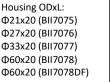
www.benthowave.com

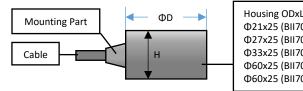

What if the connector of my analyzer (instrument) is SMA or SMC Connector? Buyer may order a SMA (or SMC) to BNC (Male) adaptor from local electronic distributors in buyer's country. BII may ship the adaptor as accessory of the device if buyer requests when ordering. By default, BII does NOT supply the adaptor as accessories. Is impedance matching necessary between hydrophones/sensors and preamplifiers/Recorders/Analyzers? it is NOT necessary to do impedance matching in low frequency range applications in which electromagnetic wave lengths are much greater than the cable length. High frequency transducers such as NDT pulsing transducers need 50Ω impedance matching among transducers, cables, and analyzers/digitizers.

My acoustic sensors generate differential signals in MHz range, are TRS connectors suitable for my applications? BII's test shows TRS connectors (Plug and Jack) of BII preamps can be used up to 20 MHz. Test Conditions: TRS Jack with 0.2m cable and TRS plug with 1m cable. Oscilloscope: 1MΩ | 20pF, Signal Source: DDS Signal Generator. Can 3.5mm (1/8") TRS be configured for single-ended signal of a hydrophone/transducer which does not have built-in preamplifier? Yes, the preamp with differentialinput TRS can accept single-ended signals from hydrophones/transducers whose TRS wiring should be like followings: TRS Tip: Signal. TRS Ring and Sleeve: Both terminals are soldered together for Signal Common and Shielding. Common and shielding should be "one-point" contact.

Can BII explain why the capacitance of my hydrophone/transducer affect high pass filtering? (1). Hydrophone/transducer is high impedance devices in low frequency range. Its simplified complex impedance = $j/(2\pi fC_h)$, C_h is the capacitance of hydrophone/transducer, f is frequency in Hz. This impedance is in series with preamp R_i and can reach several MΩ to hundreds MΩ depending on C_h and f. (2). Most high-performance operational amplifiers (IC chips) can use input resistors R_i up to 1 to 200 MΩ to avoid bumping into saturation issue.

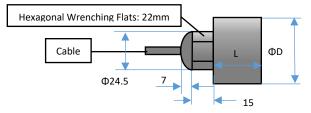

Typical Components of an Acoustic Receiving System. Depending on the system requirements, the signal conditioner is optional.

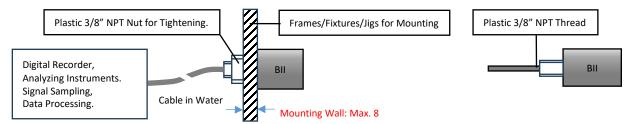




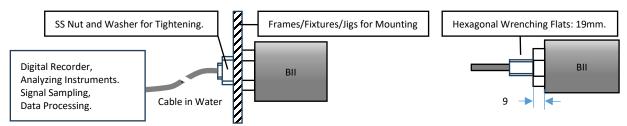
Digital Recorder, Computerized DAQ, Embedded Controller, Oscilloscope. Analyzer/Instrument.

Physical Size (Dimensional Unit: mm): The overall length varies with the length of the built-in preamplifier and mounting parts. a. General Size information. b. Size information of Customized Cable Orientation: Side Wall.





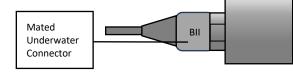
Housing ODxL: Φ21x25 (BII7075) Φ27x25 (BII7076) Ф33x25 (BII7077) Φ60x25 (BII7078) Φ60x25 (BII7078DF)

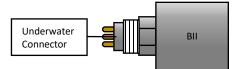

Physical Size (Dimensional Unit: mm): The overall length varies with the length of the built-in preamplifier and mounting parts. 1. Free Hanging.

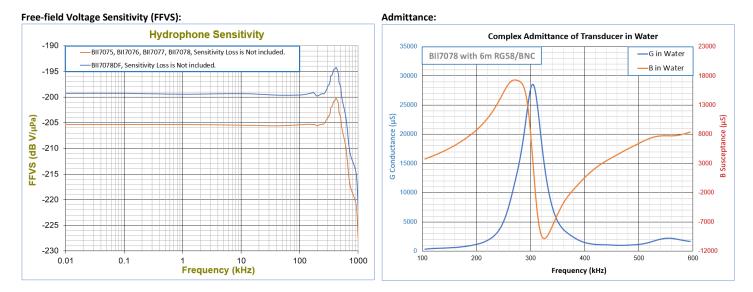
2. Bolt-Fastening Mounting BFM-NPT3/8", 3/8" NPT Thread Length: 15mm. Nut Height: 5mm.

3. Bolt-Fastening Mounting BFM-7/16" (7/16"-20x22 UNF-2A), or BFM-5/8" (5/8"-18x22 UNF).

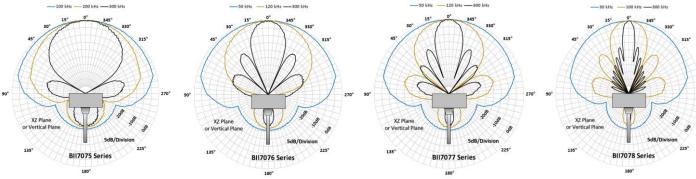
Benthowaye Instrument Inc. www.benthowave.com


Underwater Sound Solutions


4. Thru-hole Mounting (Inch Thread) with Single O-ring Sealing THM-7/16" (7/16"-20x22 UNF-2A), or BFM-5/8" (5/8"-18x22 UNF).

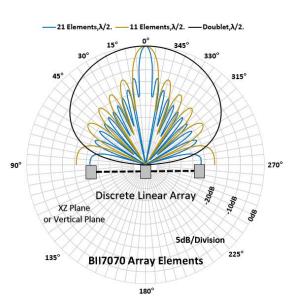

5. Free-hanging with Underwater Connector FHUWC-4P, 4 Pins (Fixed Sensitivity) (P: Pin, S: Socket.)

Mating	UWC-Cable Length-Connector: Underwater Connector with Socket insert and Internal-Thread Mating Parts, customized-length shielded cable, a Connector (WL, XLR, TRS, DIN, MIL, UMC, etc.) to DAQ devices or Digital Recorders.
Connector and Cable	How to order cable with mating underwater connector? for example: UMC4S-20m-WL: 20 m cable with Underwater Mateable Connector 4 Sockets (UMC4S) on one end and wire leads (WL) on other end. UMC4S-20m-XLR3/BS: 20 m cable with and Underwater Mateable Connector 4 Sockets (UMC4S) on one end and XLR Receptacle with 3 Male Pins (XLR3) and Two +9V Battery Snaps on other end.



6. More Mounting/Installation Options: Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and details.

Directivity Pattern



Benthowave Instrument Inc.

www.benthowave.com

Linear Array with BII7070 Series Elements.

Underwater Sound Solutions

